×

Quenched invariance principles for random walks with random conductances. (English) Zbl 1214.82044

Summary: We prove an almost sure invariance principle for a random walker among i.i.d. conductances in \(\mathbb Z^{d}\), \(d \geq 2\). We assume conductances are bounded from above but we do not require that they are bounded from below.

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
82B43 Percolation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Antal, P., Pisztora, A.: On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24, 1036–1048 (1996) · Zbl 0871.60089 · doi:10.1214/aop/1039639377
[2] Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32, 3024–3084 (2004) · Zbl 1067.60101 · doi:10.1214/009117904000000748
[3] Bass, R.F.: On Aronson’s upper bounds for heat kernels. Bull. Lond. Math. Soc. 34, 415–419 (2002) · Zbl 1032.35008 · doi:10.1112/S0024609301008918
[4] Berger, N., Biskup, M.: Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Relat. Fields 137, 83–120 (2007) · Zbl 1107.60066 · doi:10.1007/s00440-006-0498-z
[5] Berger, N., Biskup, M., Hoffman, C., Kozma, G.: Anomalous heat kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré (2007, to appear) · Zbl 1187.60034
[6] Billingsley, P.: The convergence of probability measures. Wiley, New York (1968) · Zbl 0172.21201
[7] Biskup, M., Prescott, T.M.: Functional CLT for random walk among bounded random conductances. Preprint (2007) · Zbl 1127.60093
[8] De Masi, A., Ferrari, P., Goldstein, S., Wick, W.D.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55(3/4), 787–855 (1989) · Zbl 0713.60041 · doi:10.1007/BF01041608
[9] Deuschel, J.-D., Pisztora, A.: Surface order deviations for high density percolation. Probab. Theory Relat. Fields 104, 467–482 (1996) · Zbl 0842.60023 · doi:10.1007/BF01198162
[10] Fontes, L.R.G., Mathieu, P.: On symmetric random walks with random conductances on \(\mathbb{Z}\) d . Probab. Theory Relat. Fields 134, 565–602 (2006) · Zbl 1086.60066 · doi:10.1007/s00440-005-0448-1
[11] Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)
[12] Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987) · Zbl 0635.60021
[13] Kozlov, S.M.: The method of averaging and walks in inhomogeneous environments. Russ. Math. Surv. 40(2), 73–145 (1985) · Zbl 0615.60063 · doi:10.1070/RM1985v040n02ABEH003558
[14] Mathieu, P., Piatnitski, A.L.: Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. A 463, 2287–2307 (2007) · Zbl 1131.82012 · doi:10.1098/rspa.2007.1876
[15] Mathieu, P., Remy, E.: Isoperimetry and heat kernel decay on percolations clusters. Ann. Probab. 32, 100–128 (2004) · Zbl 1078.60085 · doi:10.1214/aop/1078415830
[16] Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958) · Zbl 0096.06902 · doi:10.2307/2372841
[17] Sidoravicius, V., Sznitman, A.-S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129, 219–244 (2004) · Zbl 1070.60090 · doi:10.1007/s00440-004-0336-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.