×

Is computing with the finite Fourier transform pure or applied mathematics? (English) Zbl 0475.42014


MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
65T40 Numerical methods for trigonometric approximation and interpolation
65-03 History of numerical analysis
01A60 History of mathematics in the 20th century
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Louis Auslander, Lecture notes on nil-theta functions, American Mathematical Society, Providence, R.I., 1977. Regional Conference Series in Mathematics, No. 34. · Zbl 0421.22001
[2] L. Auslander and J. Brezin, Translation-invariant subspaces in \?² of a compact nilmanifold. I, Invent. Math. 20 (1973), 1 – 14. · Zbl 0259.22016 · doi:10.1007/BF01405260
[3] Louis Auslander and Richard Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Mathematics, Vol. 436, Springer-Verlag, Berlin-New York, 1975. · Zbl 0321.43012
[4] L. Auslander and R. Tolimieri, Algebraic structures for \?\sum _{\?\ge 1}\?²(\?/\?) compatible with the finite Fourier transform, Trans. Amer. Math. Soc. 244 (1978), 263 – 272. · Zbl 0392.43012
[5] Richard Bellman, A brief introduction to theta functions, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1961. · Zbl 0098.28301
[6] A. I. Borevich and I. R. Shafarevich, Number theory, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. · Zbl 0145.04902
[7] Jonathan Brezin, Harmonic analysis on nilmanifolds, Trans. Amer. Math. Soc. 150 (1970), 611 – 618. · Zbl 0205.13203
[8] Jonathan Brezin, Harmonic analysis on compact solvmanifolds, Lecture Notes in Mathematics, Vol. 602, Springer-Verlag, Berlin-New York, 1977. · Zbl 0403.43007
[9] J. W. Cooley, P. A. W. Lewis, and P. P. Welch, Historical notes on the fast Fourier transform, Proc. IEEE 55 (1967), 1675-1677.
[10] James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297 – 301. · Zbl 0127.09002
[11] I. J. Good, Analogues of Poisson’s summation formula, Amer. Math. Monthly 69 (1962), 259 – 266. · Zbl 0106.02502 · doi:10.2307/2312938
[12] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. · Zbl 0058.03301
[13] Kenneth Ireland and Michael I. Rosen, Elements of number theory. Including an introduction to equations over finite fields, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1972. · Zbl 0248.10002
[14] Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. · Zbl 0211.38404
[15] J. H. McClellan, Comments on ”eigenvector and eigenvalue decomposition of the discrete Fourier transform”, IEEE Trans. Audio and Electroacoust. (1972), 65.
[16] James H. McClellan and Thomas W. Parks, Eigenvalue and eigenvector decomposition of the discrete Fourier transform, IEEE Trans. Audio Electroacoust. AU-20 (1972), no. 1, 66 – 74.
[17] Hans Rademacher, Lectures on elementary number theory, A Blaisdell Book in the Pure and Applied Sciences, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. · Zbl 0119.27803
[18] R. Tolimieri, The multiplicity problem for 4-dimensional solvmanifolds, Bull. Amer. Math. Soc. 83 (1977), no. 3, 365 – 366. · Zbl 0369.43014
[19] André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143 – 211 (French). · Zbl 0203.03305 · doi:10.1007/BF02391012
[20] Shmuel Winograd, On computing the discrete Fourier transform, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 4, 1005 – 1006. · Zbl 0323.65050
[21] Shmuel Winograd, On computing the discrete Fourier transform, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 4, 1005 – 1006. · Zbl 0323.65050
[22] Shmuel Winograd, On the number of multiplications necessary to compute certain functions, Comm. Pure Appl. Math. 23 (1970), 165 – 179. · Zbl 0191.15804 · doi:10.1002/cpa.3160230204
[23] S. Winograd, Some bilinear forms whose multiplicative complexity depends on the field of constants, Math. Systems Theory 10 (1976/77), no. 2, 169 – 180. Sixteenth Annual Symposium on Foundations of Computer Science (Berkeley, Calif., 1975), selected papers. · Zbl 0363.65014 · doi:10.1007/BF01683270
[24] S. Winograd, On the multiplicative complexity of the discrete Fourier transform, Adv. in Math. 32 (1979), no. 2, 83 – 117. · Zbl 0409.68019 · doi:10.1016/0001-8708(79)90037-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.