×

Existence of convective solutions of the generalized Benard problem which are analytic in their norm. (English) Zbl 0193.56601


Keywords:

fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability. Oxford, 1961.
[2] Mihaljan, J., A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophy J. 136, 1126–1133 (1962). · doi:10.1086/147463
[3] Joseph, D. D., Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Rational Mech. Anal. (3) 22, 163–184 (1966). · Zbl 0141.43803 · doi:10.1007/BF00266474
[4] Segel, L., Nonlinear Hydrodynamic Stability Theory and its Application to Thermal Convection and Curved Flow in Non-Equilibrium Thermodynamics: Variational Techniques and Stability. Univ. Chicago Press, 1966.
[5] Görtler, H., & W. Velte, Recent mathematical treatments of laminar flow and transition problems. Phys. Fluids 10, 33 (1967). · Zbl 0163.20202 · doi:10.1063/1.1762472
[6] Ukhovskii, M. R., & V. T. Judovich, On the equation of steady state convection. Prik. Math. Mekl. 27, 353–370 (1963).
[7] Sani, R., On the non-existence of subcritical instability in fluid layers heated from below. J. Fluid Mech. 20, 315–319 (1964). · Zbl 0139.22002 · doi:10.1017/S0022112064001239
[8] Howard, L. N., Heat transport by turbulent convection. J. Fluid Mech. 17, 405–432 (1963). · Zbl 0132.42501 · doi:10.1017/S0022112063001427
[9] Velte, W., Stabilität und Verzweigung Stationärer Lösungen der Navier-Stokesschen Gleichungen. Arch. Rational Mech. Anal. 22, 1–14 (1966). · Zbl 0233.76054 · doi:10.1007/BF00281240
[10] Rabinowitz, P., Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Rational Mech. Anal. 29, 32–57 (1968). · Zbl 0164.28704 · doi:10.1007/BF00256457
[11] Judovich, V. I., The appearance of convection. Prikl. Matem, i Mekh 30, 1000–1005 (1966), English Translation, PMM 30, 1193–1199 (1967).
[12] Kirchgässner, K., Habilitationsschrift, Universität Freiburg (1966); see also Reference 5.
[13] Schlüter, A., D. Lortz, & F. Busse, On the stability of steady finite amplitude cellular convection. J. Fluid Mech. 23, 129–144 (1965). · Zbl 0134.21801 · doi:10.1017/S0022112065001271
[14] Gorkov, L., Steady convection in a plane liquid layer near the critical heat transfer point. Sov. Phys. JETP 6, 311 (1957).
[15] Malkus, W., & G. Veronis, Finite amplitude cellular convection. J. Fluid Mech. 4, 225–260 (1958). · Zbl 0082.39603 · doi:10.1017/S0022112058000410
[16] Busse, F., Dissertation, Munich (1962). Cf. also The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30, 625–651 (1967). · Zbl 0159.28202 · doi:10.1017/S0022112067001661
[17] Krishnamurti, R., Finite amplitude convection with changing mean temperature. J. Fluid Mech. 33, 445–465 (1968). · Zbl 0182.28803 · doi:10.1017/S0022112068001436
[18] Vorovich, I. I., & V. I. Judovich, Steady motion of a viscous incompressible fluid. Matem. Sb. 53, 393–428 (1961).
[19] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach 1963. · Zbl 0121.42701
[20] Fujita, H., On the existence and regularity of the steady-state solutions of the Navier-Stokes equations. J. Fac. Sci. Univ. Tokyo Sec. I, 9, 59–102 (1961). · Zbl 0111.38502
[21] Edwards, J. E., On the existence of solutions of the steady-state Navier-Stokes equations for a class of non-smooth boundary data. Technical Report, Lockheed Missiles and Space Company, June, 1963.
[22] Agmon, S., A. Douglis, & L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17, 35–42 (1964). · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[23] Joseph, D., R. Goldstein, & D. Graham, Subcritical instability and exchange of stability in a horizontal fluid layer. Phys. Fluids 11, 903–904 (1968). · Zbl 0164.28803 · doi:10.1063/1.1692017
[24] Lortz, D., Dissertation, Munich (1961).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.