×

Grothendieck classes of quiver varieties. (English) Zbl 1052.14056

For a sequence \(E_{\bullet}:E_{0}\to E_{1}\to \cdots \to E_{n}\) of vector bundles and bundle maps over a nonsingular variety \(X\) one can obtain a quiver variety \(\Omega_{r}=\{x\in X\mid \text{rank} (E_{i} (x) \to E_{j}(x)) \leq r_{ij}\), \(i<j\} \) where \(r=\{r_{ij}\} \) is a collection of integers with \(0\leq i<j\leq n.\) (Clearly \(\Omega_{r}\) also depends on \(E_{\bullet}\) but the notation indicating such is suppressed here.) Then \(\Omega_{r}\) is a subscheme of \(X\). The maximum codimension of \( \Omega_{r}\) is \(d(r) :=\sum_{i<j}(r_{i,j-1}-r_{ij}) (r_{i+1,j}-r_{ij})\).
The objective in this paper is to find a formula for \(\mathcal{O}_{\Omega_{r}},\) the structure sheaf of \(\Omega_{r},\) in \(K^{\circ}X,\) the Grothendieck ring of algebraic vector bundles on \(X\). Denoting the class of \( \Omega_{r}\) in \(K^{\circ}X\) by \([ \mathcal{O}_{\Omega_{r}}] \) gives the following description of the formula: \[ [ \mathcal{O}_{\Omega_{r}}] =\sum_{| \mu | \geq d(r)}c_{\mu}(r) G_{\mu_{i}}(E_{1}-E_{0}) \cdots G_{\mu_{n}}(E_{n}-E_{n-1}) \] where \(c_{\mu}(r) \) are certain integers described combinatorially in the paper and \(G_{\mu_{i}}(E_{i}-E_{i-1}) \) are the stable Grothendieck polynomials (which are also defined in the paper). The sum is over a finite number of sequences of partitions \(\mu \) such that the weights sum to at least \(d(r) .\) This formula is analogous to the formula for the cohomology class of \(\Omega_{r}\) as presented in the author’s previous work with Fulton, however in this situation one needs the codimension to be precisely \(d(r) .\)
The paper starts with a treatment of these Grothendieck polynomials, including their geometric significance. Following, the algorithm for generating the coefficients \(c_{\mu}(r) \) is presented. The author conjectures that \((-1)^{| \mu | -d(r)}c_{\mu}(r) \geq 0,\) that is that the signs of the coefficients alternate with the weight of \(\mu .\) Evidence to support this conjecture appears in the fifth section where it is shown that Grothendieck polynomials are special cases of the formula. Finally, a Gysin formula, which calculates \(K\)-theoretic pushforwards from a Grassmann bundle, is shown using a generalization of the Jacobi-Trudi formula for Schur functions.

MSC:

14M15 Grassmannians, Schubert varieties, flag manifolds
05E05 Symmetric functions and generalizations
14M12 Determinantal varieties
19E08 \(K\)-theory of schemes
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] S. C. Billey, W. Jockusch, and R. P. Stanley, Some combinatorial properties of Schubert polynomials , J. Algebraic Combin. 2 (1993), 345–374. · Zbl 0790.05093 · doi:10.1023/A:1022419800503
[2] M. Brion, Positivity in the Grothendieck group of complex flag varieties , to appear in J. Algebra, special issue in honor of C. Procesi. · Zbl 1052.14054 · doi:10.1016/S0021-8693(02)00505-7
[3] A. S. Buch, On a conjectured formula for quiver varieties , J. Algebraic Combin. 13 (2001), 151–172. · Zbl 0982.05106 · doi:10.1023/A:1011245531325
[4] –. –. –. –., Stanley symmetric functions and quiver varieties , J. Algebra 235 (2001), 243–260. · Zbl 0981.05099 · doi:10.1006/jabr.2000.8478
[5] ——–, A Littlewood-Richardson rule for the \(K\)-theory of Grassmannians , to appear in Acta Math. 189 (2002). · Zbl 1090.14015 · doi:10.1007/BF02392644
[6] A. S. Buch and W. Fulton, Chern class formulas for quiver varieties , Invent. Math. 135 (1999), 665–687. · Zbl 0942.14027 · doi:10.1007/s002220050297
[7] J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them. , Proc. Roy. Soc. Ser. A 269 (1962), 188–204. · Zbl 0106.25603 · doi:10.1098/rspa.1962.0170
[8] S. Fomin and C. Greene, Noncommutative Schur functions and their applications , Discrete Math. 193 (1998), 179–200. · Zbl 1011.05062 · doi:10.1016/S0012-365X(98)00140-X
[9] S. Fomin and A. N. Kirillov, “Grothendieck polynomials and the Yang-Baxter equation” in Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics (New Brunswick, N.J., 1994) , 183–190.,
[10] –. –. –. –., The Yang-Baxter equation, symmetric functions, and Schubert polynomials , Discrete Math. 153 (1996), 123–143. · Zbl 0852.05078 · doi:10.1016/0012-365X(95)00132-G
[11] W. Fulton, Intersection Theory , 2d ed., Ergeb. Math. Grenzgeb. (3) 2 , Springer, Berlin, 1998. · Zbl 0541.14005
[12] W. Fulton and A. Lascoux, A Pieri formula in the Grothendieck ring of a flag bundle , Duke Math. J. 76 (1994), 711–729. · Zbl 0840.14007 · doi:10.1215/S0012-7094-94-07627-8
[13] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces , Mem. Amer. Math. Soc. 31 (1981), no. 243. · Zbl 0467.55005
[14] W. Fulton and P. Pragacz, Schubert Varieties and Degeneracy Loci , Lecture Notes in Math. 1689 , Springer, Berlin, 1998.
[15] N. Gonciulea and V. Lakshmibai, Singular loci of ladder determinantal varieties and Schubert varieties , J. Algebra 229 (2000), 463–497., ; Erratum , J. Algebra 232 (2000), 360–395. Mathematical Reviews (MathSciNet): · Zbl 1001.14019
[16] T. Józefiak, A. Lascoux, and P. Pragacz, Classes of determinantal varieties associated with symmetric and skew-symmetric matrices (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 45 , no.3 (1981), 662–673. · Zbl 0471.14028
[17] V. Lakshmibai and P. Magyar, Degeneracy schemes, quiver schemes, and Schubert varieties , Internat. Math. Res. Notices 1998 , 627–640. · Zbl 0936.14001 · doi:10.1155/S1073792898000397
[18] A. Lascoux, “Transition on Grothendieck polynomials” in Physics and Combinatorics (Nagoya, 2000) , World Sci., River Edge, N.J., 2001, 164–179. \CMP1 872 255 · Zbl 1052.14059
[19] ——–, Foncteurs de Schur et Grassmanniennes , thèse, Université Paris 7, Paris, 1977.
[20] A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux , C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 629–633. · Zbl 0542.14030
[21] C. Lenart, Noncommutative Schubert calculus and Grothendieck polynomials , Adv. Math. 143 (1999), 159–183. · Zbl 0978.05074 · doi:10.1006/aima.1998.1795
[22] –. –. –. –., Combinatorial aspects of the \(K\)-theory of Grassmannians , Ann. Comb. 4 (2000), 67–82. · Zbl 0958.05128 · doi:10.1007/PL00001276
[23] P. Pragacz, Enumerative geometry of degeneracy loci , Ann. Sci. École Norm. Sup. (4) 21 (1988), 413–454. · Zbl 0687.14043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.