×

Representations of alternative algebras. (English) Zbl 0046.03503


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. A. Albert, On the right alternative algebras, Ann. of Math. (2) 50 (1949), 318 – 328. · Zbl 0033.15501 · doi:10.2307/1969457
[2] R. H. Bruck and Erwin Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc. 2 (1951), 878 – 890. · Zbl 0044.02205
[3] Samuel Eilenberg, Extensions of general algebras, Ann. Soc. Polon. Math. 21 (1948), 125 – 134. · Zbl 0031.34303
[4] Harish-Chandra, On the radical of a Lie algebra, Proc. Amer. Math. Soc. 1 (1950), 14 – 17. · Zbl 0036.29804
[5] G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math. 64 (1942), 677 – 694. · Zbl 0063.02028 · doi:10.2307/2371713
[6] Nathan Jacobson, Completely reducible Lie algebras of linear transformations, Proc. Amer. Math. Soc. 2 (1951), 105 – 113. · Zbl 0043.26803
[7] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509 – 530. · Zbl 0044.02503
[8] A. Malcev, On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 42 – 45. · Zbl 0060.08004
[9] R. D. Schafer, The Wedderburn principal theorem for alternative algebras, Bull. Amer. Math. Soc. 55 (1949), 604 – 614. · Zbl 0033.15304
[10] R. D. Schafer, Inner derivations of non-associative algebras, Bull. Amer. Math. Soc. 55 (1949), 769 – 776. · Zbl 0033.34803
[11] R. D. Schafer, A theorem on the derivations of Jordan algebras, Proc. Amer. Math. Soc. 2 (1951), 290 – 294. · Zbl 0043.03804
[12] M. Zorn, Theorie der alternativen Ringe, Abh. Math. Sem. Hamburgischen Univ. vol 8 (1930) pp. 123-147. · JFM 56.0140.01
[13] Max Zorn, Alternative rings and related questions I: existence of the radical, Ann. of Math. (2) 42 (1941), 676 – 686. · Zbl 0025.30203 · doi:10.2307/1969256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.