×

On calibrations for Lawson’s cones. (English) Zbl 1127.53047

For integers \(k\), \(h\geq 2\), consider the Euclidean cones \[ C_{k,h}:=\left\{(x,y)\in \mathbb{R}^k\times \mathbb{R}^h\;;\;|x|^2=\frac{k-1}{h-1}\,|y|^2. \right\} \] For \(k\geq 4\), the cones \(C_{k,k}\) were shown to be stable in [J. Simons, Ann. Math. (2) 88, 62–105 (1968; Zbl 0181.49702)], and area-minimizing in [E. Bombieri, E. De Giorgi, E. Giusti, Invent. Math. 7, 243–268 (1969; Zbl 0183.25901)], by constructing a function of least gradient having the cone as a level hypersurface.
In Theorem 1.1 of this paper it is shown that (i) if \(n>8\) then \(C_{k,h}\) is area-minimizing, and (ii) if \(n=8\) then \(C_{k,h}\) has mean curvature zero out of the origin and it is area-minimizing if and only if \(|k-h|\leq 2\). Statement (i) was proven in H. B. Lawson jun. [Trans. Am. Math. Soc. 173, 231–249 (1972; Zbl 0279.49043)]. Partial results of (ii) were given by Simoes, Miranda, Concus and Miranda, and Benarros and Miranda.
In this paper a new proof of Theorem 1.1 is given modelled on the work by Bombieri, de Giorgi and Giusti. The author constructs a foliation of \(\mathbb{R}^{k+h}\) by minimal hypersurfaces including the cone \(C_{k,h}\), with the same group of isometries \(\text{SO}(k)\times \text{SO}(h)\). A calibration argument then proves the result.

MSC:

53C38 Calibrations and calibrated geometries
49Q05 Minimal surfaces and optimization
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] G. ALBERTI - L. AMBROSIO - X. CABRÉ, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65, No. 1-3 (2001), pp. 9-33. Zbl1121.35312 MR1843784 · Zbl 1121.35312 · doi:10.1023/A:1010602715526
[2] G. ALBERTI - G. DAL MASO - G. BOUCHITTÉ, The calibration method for the Munford-Shah functional, Calc. Var. Partial Differential Equations, 16, No. 3 (2003), pp. 299-333. Zbl1015.49008 MR2001706 · Zbl 1015.49008 · doi:10.1007/s005260100152
[3] D. BENARROS - M. MIRANDA, Lawson cones and the Bernstein theorem, Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), pp. 44-56. Zbl0860.53003 MR1356726 · Zbl 0860.53003
[4] E. BOMBIERI - E. DE GIORGI - E. GIUSTI, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), pp. 243-268. Zbl0183.25901 MR250205 · Zbl 0183.25901 · doi:10.1007/BF01404309
[5] P. CONCUS - M. MIRANDA, MACSYMA and minimal surfaces, Proc. of Symposia in Pure Mathematics, by the Amer. Math. Soc., 44(1986), pp. 163-169. MR840272
[6] L. C. EVANS - R. F. GARIEPY, Measure Theory and Fine Properties of Functions, CRC Press, New York, 1992. Zbl0804.28001 MR1158660 · Zbl 0804.28001
[7] G. LAWLOR - F. MORGAN, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pac. J. Math., 166, No. 1 (1994), pp. 55-83. Zbl0830.49028 MR1306034 · Zbl 0830.49028 · doi:10.2140/pjm.1994.166.55
[8] H. B. LAWSON JR., The equivariant Plateau problem and interior regularity, Trans. Amer. Math. Soc., 173 (1972), pp. 231-249. Zbl0279.49043 MR308905 · Zbl 0279.49043 · doi:10.2307/1996271
[9] U. MASSARI - M. MIRANDA, A remark on minimal cones, in Boll. Un. Mat. Ital. (6), 2-A (1983), pp. 123-125. Zbl0518.49030 MR694754 · Zbl 0518.49030
[10] M. MIRANDA, Grafici minimi completi, Ann. Univ. Ferrara, 23 (1977), pp. 269-272. Zbl0367.53001 MR467551 · Zbl 0367.53001
[11] F. MORGAN, Calibrations and new singularities in area-minimizing surfaces: A survey, Variational methods, Proc. Conf. (Paris/Fr. 1988), Prog. Nonlinear Differ. Equ. Appl., 4 (1990), pp. 329-342. Zbl0721.53058 MR1205164 · Zbl 0721.53058
[12] P. SIMOES, A class of minimal cones in Rn , nF8, that minimize area, Ph. D. Thesis, University of California, (Berkeley, CA, 1973).
[13] J. SIMONS, Minimal varieties in Riemannian manifolds, Ann. Math., 88 (1968), pp. 62-105. Zbl0181.49702 MR233295 · Zbl 0181.49702 · doi:10.2307/1970556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.