×

Algebraic sum of unbounded normal operators and the square root problem of Kato. (English) Zbl 1121.47015

Taking \(A\) and \(B\) to be unbounded normal operators on a complex Hilbert space \({\mathbb H}\), we may, as a consequence of the spectral theorem, write \(A=A_1-iA_2\) and \(B=B_1-iB_2\), where the \(A_k\) and \(B_k\) are unbounded selfadjoint operators on \({\mathbb H}\). If, moreover, the operators \(A_k\) and \(B_k\) are non-negative, then, considering the sesquilinear functionals defined by \(\phi(u,\,v):=\langle A_1u,\,v\rangle - i\,\langle A_2u,\,v\rangle\), \(\psi(u,\,v):=\langle B_1u,\,v\rangle - i\,\langle B_2u,\,v\rangle\), and \(\xi(u,\,v):=\phi(u,\,v)+\psi(u,\,v)\), we see that if \(\phi\) and \(\psi\) are sectorial, that is, if there exist constants \(c_1\) and \(c_2\)with \(\operatorname{Im} \phi(u,\,u)\leq c_1\operatorname{Re}\phi(u,\,u)\) and \(\operatorname{Im} \psi(u,\,u)\leq c_1\operatorname{Re}\psi(u,\,u)\) for all \(u\) in the appropriate domains, then \(\xi\) is sectorial as well.
Theorem 2.1 of the present paper demonstrates that, under the further assumptions that the intersection of the domains of \(A\) and \(B\) is dense in \({\mathbb H}\) and that the operator \(\overline{A+B}\) is maximal, then this latter operator satisfies the square root problem of Kato; that is, the domains of \(\overline{A+B}^{1/2}\) and \(\overline{A+B}^{\,*1/2}\) both coincide with the intersection of the domains of \(A^{1/2}\) and \(B^{1/2}\). The density assumption on \(\text{Dom}(A)\cap\text{Dom}(B)\) can be replaced with certain conditions on \(\text{Dom}(|A|^{1/2})\cap\text{Dom}(|B|^{1/2})\) that ensure (Theorem 2.2) the existence of an operator \(A\oplus B\) (a “generalized” sum of \(A\) and \(B\)) satisfying the square root problem of Kato. (So \(\text{Dom}((A\oplus B)^{1/2})=\text{Dom}((A\oplus B)^{\,*1/2})=\text{Dom}(|A|^{1/2})\cap\text{Dom}(|B|^{1/2})\).)
The paper concludes with an example where the sum \(A+B\) is a perturbed Schrödinger operator.

MSC:

47B25 Linear symmetric and selfadjoint operators (unbounded)
35J15 Second-order elliptic equations
47D08 Schrödinger and Feynman-Kac semigroups
PDFBibTeX XMLCite
Full Text: arXiv EuDML

References:

[1] P. AUSHER - S. HOFMANN - A. MCINTOSH - P. TCHAMITCHIAN, The Kato Square Root Problem for Higher Order Elliptic Operators and Systems on Rn , J. Evol. Eq., 1, No. 4 (2001), pp. 361-385. Zbl1019.35029 MR1877264 · Zbl 1019.35029 · doi:10.1007/PL00001377
[2] A. BIVAR-WEINHOLTZ - M. LAPIDUS, Product Formula for Resolvents of Normal Operator and the Modified Feynman Integral, Proc. Amer. Math. Soc., 110, No. 2 (1990). Zbl0718.47023 MR1013964 · Zbl 0718.47023 · doi:10.2307/2048088
[3] H. BRÉZIS - T. KATO, Remarks on the Schrödinger Operator with Singular Complex Potentials, J. Math. Pures Appl., 58 (1979), pp. 137-151. Zbl0408.35025 MR539217 · Zbl 0408.35025
[4] T. DIAGANA, Sommes d’opérateurs et conjecture de Kato-McIntosh, C. R. Acad. Sci. Paris, t. 330, Série I (2000), pp. 461-464. Zbl0951.47001 MR1756959 · Zbl 0951.47001 · doi:10.1016/S0764-4442(00)00200-7
[5] T. DIAGANA, Schrödinger operators with a singular potential, Int. J. MathMath. Sci., 29, No. 6 (2002), pp. 371-373. Zbl0997.35010 MR1897865 · Zbl 0997.35010 · doi:10.1155/S0161171202007330
[6] T. DIAGANA, Quelques remarques sur l’opérateur de Schödinger avec un potentiel complexe singulier particulier, Bull. Belgian. Math. Soc., 9 (2002), pp. 293-298. Zbl1040.35017 MR2017083 · Zbl 1040.35017
[7] T. DIAGANA, An application to Kato’s square root problem, Int. J. MathMath. Sci. Vol., 9, No. 3 (2002), pp. 179-181. Zbl1001.47021 MR1888351 · Zbl 1001.47021 · doi:10.1155/S0161171202007706
[8] T. DIAGANA, A Generalization related to Schrödinger operators with a singular potential, Int. J. Math-Math. Sci., 29, No. 10 (2002), pp. 609-611. Zbl1085.35051 MR1900505 · Zbl 1085.35051 · doi:10.1155/S0161171202007974
[9] T. KATO, Perturbation theory for linear operators, New york (1966). Zbl0148.12601 MR203473 · Zbl 0148.12601
[10] J. L. LIONS, Espace intermédiaires entre espaces Hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumanie (N.S), 2 (50) (1958), pp. 419-432. Zbl0097.09501 MR151829 · Zbl 0097.09501
[11] J. L. LIONS, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan., 14 (2) (1962). Zbl0108.11202 · Zbl 0108.11202 · doi:10.2969/jmsj/01420233
[12] A. PAZY, Semigroups of linear operators and application to partial differential equations, Springer-Verlag, New York (1983). Zbl0516.47023 MR710486 · Zbl 0516.47023
[13] W. RUDIN, Functional analysis, Tata McGraw-Hill, New Delhi (1974). Zbl0253.46001 MR365062 · Zbl 0253.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.