×

Exotic Bailey-Slater spt-functions. II: Hecke-Rogers-type double sums and Bailey pairs from groups A, C, E. (English) Zbl 1348.11079

Summary: We investigate spt-crank-type functions arising from Bailey pairs. We recall four spt-type functions corresponding to the Bailey pairs \(A1\), \(A3\), \(A5\), and \(A7\) of Slater and given four new spt-type functions corresponding to Bailey pairs \(C1\), \(C5\), \(E2\), and \(E4\). Each of these functions can be thought of as a count on the number of appearances of the smallest part in certain integer partitions. We prove simple Ramanujan type congruences for these functions that are explained by a spt-crank-type function. The spt-crank-type functions are two variable \(q\)-series determined by a Bailey pair, that when \(z = 1\) reduce to the spt-type functions. We find the spt-crank-type functions to have interesting representations as either infinite products or as Hecke-Rogers-type double series. These series reduce nicely when \(z\) is a certain root of unity and allow us to deduce the congruences. Additionally we find dissections when \(z\) is a certain root of unity to give another proof of the congruences. Our double sum and product formulas require Bailey’s lemma and conjugate Bailey pairs. Our dissection formulas follow from Bailey’s lemma and dissections of known ranks and cranks.
For Parts I and III by the second author see Adv. Math. 305, 479–514 (2017; Zbl 1416.11154) and Acta Arith. 173, No. 4, 317–364 (2016; Zbl 1351.11069).

MSC:

11P82 Analytic theory of partitions
11P83 Partitions; congruences and congruential restrictions
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andrews, G. E., The Theory of Partitions, Encyclopedia of Mathematics and its Applications, vol. 2 (1976), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass.-London-Amsterdam · Zbl 0371.10001
[2] Andrews, G. E., Hecke modular forms and the Kac-Peterson identities, Trans. Amer. Math. Soc., 283, 2, 451-458 (1984) · Zbl 0545.10016
[3] Andrews, G. E., The number of smallest parts in the partitions of \(n\), J. Reine Angew. Math., 624, 133-142 (2008) · Zbl 1153.11053
[4] Andrews, G. E.; Berndt, B. C., Ramanujan’s Lost Notebook. Part III (2012), Springer: Springer New York · Zbl 1248.11003
[5] Andrews, G. E.; Garvan, F. G., Dyson’s crank of a partition, Bull. Amer. Math. Soc. (N.S.), 18, 2, 167-171 (1988) · Zbl 0646.10008
[6] Andrews, G. E.; Garvan, F. G.; Liang, J., Combinatorial interpretations of congruences for the spt-function, Ramanujan J., 29, 1-3, 321-338 (2012) · Zbl 1256.05012
[7] Atkin, A. O.L.; Swinnerton-Dyer, P., Some properties of partitions, Proc. Lond. Math. Soc. (3), 4, 84-106 (1954) · Zbl 0055.03805
[8] Bailey, W. N., Identities of the Rogers-Ramanujan type, Proc. Lond. Math. Soc. (2), 50, 1-10 (1948) · Zbl 0031.39203
[9] Berkovich, A.; Garvan, F. G., Some observations on Dyson’s new symmetries of partitions, J. Combin. Theory Ser. A, 100, 1, 61-93 (2002) · Zbl 1016.05003
[10] Bressoud, D. M., Hecke modular forms and \(q\)-Hermite polynomials, Illinois J. Math., 30, 1, 185-196 (1986) · Zbl 0577.05009
[11] Bringmann, K.; Lovejoy, J.; Osburn, R., Rank and crank moments for overpartitions, J. Number Theory, 129, 7, 1758-1772 (2009) · Zbl 1248.11076
[12] Dyson, F. J., Some guesses in the theory of partitions, Eureka, 8, 10-15 (1944)
[13] Garvan, F. G., New combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7 and 11, Trans. Amer. Math. Soc., 305, 1, 47-77 (1988) · Zbl 0641.10009
[16] Gasper, G.; Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, vol. 96 (2004), Cambridge University Press: Cambridge University Press Cambridge, with a foreword by Richard Askey · Zbl 1129.33005
[17] Hickerson, D. R.; Mortenson, E. T., Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I, Proc. Lond. Math. Soc. (3), 109, 2, 382-422 (2014) · Zbl 1367.11047
[19] Lovejoy, J., Rank and conjugation for the Frobenius representation of an overpartition, Ann. Comb., 9, 3, 321-334 (2005) · Zbl 1114.11081
[20] Lovejoy, J., Ramanujan-type partial theta identities and conjugate Bailey pairs, Ramanujan J., 29, 1-3, 51-67 (2012) · Zbl 1322.11107
[21] Lovejoy, J.; Osburn, R., Rank differences for overpartitions, Q. J. Math., 59, 2, 257-273 (2008) · Zbl 1153.11052
[22] Robins, S., Generalized Dedekind \(η\)-products, (The Rademacher Legacy to Mathematics. The Rademacher Legacy to Mathematics, University Park, PA, 1992. The Rademacher Legacy to Mathematics. The Rademacher Legacy to Mathematics, University Park, PA, 1992, Contemp. Math., vol. 166 (1994), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 119-128 · Zbl 0808.11031
[23] Rødseth, Ø., Dissections of the generating functions of \(q(n)\) and \(q_0(n)\), Årb. Univ. Bergen, Mat.-Nat.vitensk. Ser., 1969, 12 (1970), 12 pp · Zbl 0243.10039
[24] Slater, L. J., A new proof of Rogers’s transformations of infinite series, Proc. Lond. Math. Soc. (2), 53, 460-475 (1951) · Zbl 0044.06102
[25] Slater, L. J., Further identities of the Rogers-Ramanujan type, Proc. Lond. Math. Soc. (2), 54, 147-167 (1952) · Zbl 0046.27204
[26] Watson, G. N., The final problem: an account of the mock theta functions, J. Lond. Math. Soc., S1-11, 1, 55 (1936) · Zbl 0013.11502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.