×

Numerical approximation of fractional powers of elliptic operators. (English) Zbl 1331.65159

Summary: We present and study a novel numerical algorithm to approximate the action of \( T^\beta :=L^{-\beta }\) where \( L\) is a symmetric and positive definite unbounded operator on a Hilbert space \( H_0\). The numerical method is based on a representation formula for \( T^{-\beta }\) in terms of Bochner integrals involving \( (I+t^2L)^{-1}\) for \( t\in (0,\infty )\).
To develop an approximation to \(T^\beta\), we introduce a finite element approximation \(L_h\) to \(L\) and base our approximation to \(T^\beta\) on \( T_h^\beta := L_h^{-\beta}\). The direct evaluation of \(T_h^\beta\) is extremely expensive as it involves expansion in the basis of eigenfunctions for \(L_h\). The above mentioned representation formula holds for \(T_h^{-\beta }\) and we propose three quadrature approximations denoted generically by \( Q_h^\beta\). The two results of this paper bound the errors in the \(H_0\) inner product of \( T^\beta -T_h^\beta \pi _h\) and \( T_h^\beta -Q_h^\beta\) where \(\pi _h\) is the \( H_0\) orthogonal projection into the finite element space. We note that the evaluation of \(Q_h^\beta\) involves application of \((I+(t_i)^2L_h)^{-1}\) with \(t_i\) being either a quadrature point or its inverse. Efficient solution algorithms for these problems are available and the problems at different quadrature points can be straightforwardly solved in parallel. Numerical experiments illustrating the theoretical estimates are provided for both the quadrature error \(T_h^\beta -Q_h^\beta\) and the finite element error \(T^\beta -T_h^\beta \pi _h\).

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65R20 Numerical methods for integral equations
35S15 Boundary value problems for PDEs with pseudodifferential operators
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bacuta, C.; Bramble, J. H.; Pasciak, J. E., New interpolation results and applications to finite element methods for elliptic boundary value problems, East-West J. Numer. Math., 9, 3, 179-198 (2001) · Zbl 0993.65128
[2] Bakunin, Oleg G., Turbulence and Diffusion, Springer Series in Synergetics, xvi+265 pp. (2008), Springer-Verlag: Berlin:Springer-Verlag · Zbl 1172.76001
[3] Balakrishnan, A. V., Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10, 419-437 (1960) · Zbl 0103.33502
[4] Bates, Peter W., On some nonlocal evolution equations arising in materials science. Nonlinear dynamics and evolution equations, Fields Inst. Commun. 48, 13-52 (2006), Amer. Math. Soc.: Providence, RI:Amer. Math. Soc. · Zbl 1101.35073
[5] Birman, M. Sh.; Solomjak, M. Z., Spectral Theory of Selfadjoint Operators in Hilbert Space, Mathematics and its Applications (Soviet Series), xv+301 pp. (1987), D. Reidel Publishing Co.: Dordrecht:D. Reidel Publishing Co.
[6] Bramble, James H.; Zhang, Xuejun, The analysis of multigrid methods, Handb. Numer. Anal., VII, 173-415 (2000), North-Holland: Amsterdam:North-Holland · Zbl 0972.65103
[7] Caffarelli, Luis; Silvestre, Luis, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 7-9, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[8] [ISI:000175019600004] P. Carr, H. Geman, D.B. Madan, and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business, 75(2):305-332, APR 2002.
[9] Constantin, Peter; Wu, Jiahong, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30, 5, 937-948 (1999) · Zbl 0957.76093 · doi:10.1137/S0036141098337333
[10] Dauge, Monique, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics 1341, viii+259 pp. (1988), Springer-Verlag: Berlin:Springer-Verlag · Zbl 0668.35001
[11] Duvaut, G.; Lions, J.-L., Inequalities in Mechanics and Physics, xvi+397 pp. (1976), Springer-Verlag: Berlin:Springer-Verlag · Zbl 0331.35002
[12] Eringen, A. Cemal, Nonlocal Continuum Field Theories, xvi+376 pp. (2002), Springer-Verlag: New York:Springer-Verlag · Zbl 1023.74003
[13] Fujita, Hiroshi; Suzuki, Takashi, Evolution problems, Handb. Numer. Anal., II, 789-928 (1991), North-Holland: Amsterdam:North-Holland · Zbl 0875.65084
[14] Gavrilyuk, Ivan P., An algorithmic representation of fractional powers of positive operators, Numer. Funct. Anal. Optim., 17, 3-4, 293-305 (1996) · Zbl 0860.47011 · doi:10.1080/01630569608816695
[15] Gavrilyuk, Ivan P.; Hackbusch, Wolfgang; Khoromskij, Boris N., \( \mathcal{H} \)-matrix approximation for the operator exponential with applications, Numer. Math., 92, 1, 83-111 (2002) · Zbl 1005.65113 · doi:10.1007/s002110100360
[16] Gavrilyuk, Ivan P.; Hackbusch, Wolfgang; Khoromskij, Boris N., Data-sparse approximation to the operator-valued functions of elliptic operator, Math. Comp., 73, 247, 1297-1324 (2004) · Zbl 1065.47009 · doi:10.1090/S0025-5718-03-01590-4
[17] Gavrilyuk, Ivan P.; Hackbusch, Wolfgang; Khoromskij, Boris N., Data-sparse approximation to a class of operator-valued functions, Math. Comp., 74, 250, 681-708 (2005) · Zbl 1066.65060 · doi:10.1090/S0025-5718-04-01703-X
[18] Gavrilyuk, Ivan P.; Hackbusch, Wolfgang; Khoromskij, Boris N., Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems, Computing, 74, 2, 131-157 (2005) · Zbl 1071.65032 · doi:10.1007/s00607-004-0086-y
[19] Gilboa, Guy; Osher, Stanley, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 3, 1005-1028 (2008) · Zbl 1181.35006 · doi:10.1137/070698592
[20] Guermond, J.-L., The LBB condition in fractional Sobolev spaces and applications, IMA J. Numer. Anal., 29, 3, 790-805 (2009) · Zbl 1167.76020 · doi:10.1093/imanum/drn028
[21] Ilic, M.; Liu, F.; Turner, I.; Anh, V., Numerical approximation of a fractional-in-space diffusion equation. I, Fract. Calc. Appl. Anal., 8, 3, 323-341 (2005) · Zbl 1126.26009
[22] Ilic, M.; Liu, F.; Turner, I.; Anh, V., Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal., 9, 4, 333-349 (2006) · Zbl 1132.35507
[23] [kellogg] R. B. Kellogg, Interpolation between subspaces of a Hilbert space, Technical report, Univ. of Maryland, Inst., Fluid Dynamics and App. Math., Tech. Note BN-719, 1971.
[24] Lund, John; Bowers, Kenneth L., Sinc Methods for Quadrature and Differential Equations, x+304 pp. (1992), Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA:Society for Industrial and Applied Mathematics (SIAM) · Zbl 0753.65081 · doi:10.1137/1.9781611971637
[25] McCay, B. M.; Narasimhan, M. N. L., Theory of nonlocal electromagnetic fluids, Arch. Mech. (Arch. Mech. Stos.), 33, 3, 365-384 (1981) · Zbl 0485.76124
[26] McLean, William; Thom{\'e}e, Vidar, Iterative solution of shifted positive-definite linear systems arising in a numerical method for the heat equation based on Laplace transformation and quadrature, ANZIAM J., 53, 2, 134-155 (2011) · Zbl 1264.65046 · doi:10.1017/S1446181112000107
[27] Nazarov, Sergey A.; Plamenevsky, Boris A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics 13, viii+525 pp. (1994), Walter de Gruyter & Co.: Berlin:Walter de Gruyter & Co. · Zbl 0806.35001 · doi:10.1515/9783110848915.525
[28] [Abner] R. H. Nochetto, E. Otarola, and A. J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis. submitted. · Zbl 1347.65178
[29] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[30] Thom{\'e}e, Vidar, Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics 25, x+302 pp. (1997), Springer-Verlag: Berlin:Springer-Verlag · Zbl 0884.65097
[31] Yang, Qianqian; Turner, Ian; Liu, Fawang; Ili{\'c}, Milos, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33, 3, 1159-1180 (2011) · Zbl 1229.35315 · doi:10.1137/100800634
[32] [yoshida] Toshio Yoshida. \newblockFunctional Analysis. \newblock Springer-Verlag, New York, 1995. \endbiblist
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.