×

The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems. (English) Zbl 1327.65229

Summary: The shifted-inverse iteration based on the multigrid discretizations developed in recent years is an efficient computation method for eigenvalue problems. In this paper, for general self-adjoint eigenvalue problems, including the Maxwell eigenvalue problem and integral operator eigenvalue problem, we establish the inverse iteration with fixed shift based on multigrid discretizations. We study in depth the inverse iteration with fixed shift and Rayleigh quotient iteration based on multigrid discretizations and first prove under general conditions the error estimates and convergence for the iterative solution approximating the exact solution of the original eigenvalue problems, especially in an adaptive fashion. Finally, we present some numerical examples performed to validate our theoretical results.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Software:

iFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Ainsworth and J. T. Oden, {\it A Posterior Error Estimation in Finite Element Analysis}, Wiley-Interscience, New York, 2011. · Zbl 1008.65076
[2] I. Babuska and J. Osborn, {\it Finite element-Galerkin approximation of eigenvalues and eigenvectors of selfadjoint problems}, Math. Comp., 52 (1989), pp. 275-297. · Zbl 0675.65108
[3] I. Babuska and J. Osborn, {\it Eigenvalue problems}, in Finite Element Methods (Part 1), P. G. Ciarlet and J. -L. Lions, eds., Handb. Numer. Anal. 2, Elsevier/North-Holand, Amsterdam, 1991, pp. 640-787. · Zbl 0875.65087
[4] I. Babuska and W. C. Rheinboldt, {\it Error estimates for adaptive finite element computations}, SIAM J. Numer. Anal., 15 (1978), pp. 736-754. · Zbl 0398.65069
[5] S. C. Brenner and L. R. Scott, {\it The Mathematical Theory of Finite Element Methods}, 2nd ed., Springer-Verlag, New York, 2002. · Zbl 1012.65115
[6] H. Bi, Y. Yang, and H. Li, {\it Local and parallel finite element discretizations for eigenvalue problems}, SIAM J. Sci. Comput., 35 (2013), pp. 2575-2597.
[7] D. Boffi, {\it Finite element approximation of eigenvalue problems}, Acta. Numer., 19 (2010), pp. 1-120. · Zbl 1242.65110
[8] D. Boffi, P. Fernandes, L. Gastaldi, and J. Perugia, {\it Computational models of electromagnetic resonators: Analysis of edge element approximation}, SIAM J. Numer. Anal., 36 (1999), pp. 1264-1290. · Zbl 1025.78014
[9] J. Bramble, {\it Multigrid Methods}, Pitman Res. Notes Math. 294, Wiley, New York, 1993. · Zbl 0786.65094
[10] M. Brezina, R. D. Falgout, S. MacLachlan, T. A. Manteuffel, S. F. McCormick, and J. Ruge, {\it Adaptive algebraic multigrid}, SIAM J. Sci. Comput., 27 (2006), pp. 1261-1286. · Zbl 1100.65025
[11] A. Buffa, P. Ciarlet, Jr. and E. Jamelot, {\it Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements}, Numer. Math., 113 (2009), pp. 497-518. · Zbl 1180.78048
[12] A. Buffa and P. Houston, {\it Discontinuous Galerkin computation of the Maxwell eigenvalues on simpilicial meshes}, J. Comput. Appl. Math., 204 (2007), pp. 317-333. · Zbl 1131.78007
[13] C. Carstensen, J. Hu, and A. Orlando, {\it Framework for the a posteriori error analysis of nonconforming finite elements}, SIAM J. Numer. Anal., 45 (2007), pp. 68-82. · Zbl 1165.65072
[14] F. Chatelin, {\it Spectral Approximations of Linear Operators}, Academic Press, New York, 1983. · Zbl 0517.65036
[15] H. Chen, Y. He, Y. Li, and H. Xie, {\it A multigrid method for eigenvalue problems based on shifted-inverse power technique}, European J. Math., 1 (2015), pp. 207-228. · Zbl 1323.65114
[16] J. Chen, Y. Xu, and J. Zou, An adaptive inverse iteration for Maxwell eigenvalue problem based on edge elements, J. Comput. Phys., 229 (2010), pp. 2649-2658. · Zbl 1184.78022
[17] L. Chen, {\it iFEM: An Innovative Finite Element Methods Package in MATLAB}, Technical report, University of California at Irvine, 2009. ļearpage
[18] P. G. Ciarlet, {\it Basic error estimates for elliptic proplems}, in Finite Element Methods (Part 1), P. G. Ciarlet and J. -L. Lions, eds., Handb. Numer. Anal. 2, Elsevier/North-Holand, 1991, pp. 21-343.
[19] P. Jr. Ciarlet, {\it Augmented formulations for solving Maxwell equations}, Comput. Meth. Appl. Mech. Eng., vol. 194, pp. 559-586, 2005. · Zbl 1063.78018
[20] P. Jr. Ciarlet and G. Hechme, {\it Computing electromagnetic eigenmodes with continuous Galerkin approximations}, Comput. Methods Appl. Mech. Engrg., 198 (2002), pp. 358-365. · Zbl 1194.78053
[21] M. Costabel and M. Dauge, {\it Weighted regularization of Maxwell equations in polyhedral domains}, Numer. Math., 93 (2002), pp. 239-277. · Zbl 1019.78009
[22] M. Costabel and M. Dauge, {\it Computation of resonance frequencies for Maxwell equations in non smooth domains}, in Computational Methods for Wave Propagation in Direct Scattering, Lect. Notes Comput. Sci. Eng. 31, Springer, New York, (2003). · Zbl 1116.78002
[23] W. Dahmen, T. Rohwedder, R. Schneider, and A. Zeiser, {\it Adaptive eigenvalue computation: Complexity estimates}, Numer. Math., 110 (2008), pp. 277-312. · Zbl 1157.65029
[24] X. Dai, J. Xu, and A. Zhou, {\it Convergence and optimal complexity of adaptive finite element eigenvalue computations}, Numer. Math., 110 (2008), pp. 313-355. · Zbl 1159.65090
[25] X. Dai and A. Zhou, {\it Three-scale finite element discretizations for quantum eigenvalue problems}, SIAM J. Numer. Anal., 46 (2008), pp. 295-324. · Zbl 1160.65060
[26] R. G. Durán, C. Padra, and R. Rodríguez, {\it A posteriori error estimates for the finite element approximation of eigenvalue problems}, Math. Models Methods Appl. Sci., 13 (2003), pp. 1219-1229. · Zbl 1072.65144
[27] J. Gedicke and C. Carstensen, {\it A posteriori error estimators for convection-diffusion eigenvalue problems}, Comput. Methods Appl. Mech. Engrg., 268 (2014), pp. 160-177. · Zbl 1295.65108
[28] X. G. Gong, L. Shen, D. Zhang, and A. H. Zhou, {\it Finite element approximations for Schr \(\ddot{o}\) dinger equations with applications to electronic structure computations}, J. Comput. Math., 26 (2008), pp. 310-323. · Zbl 1174.65047
[29] W. Hackbusch, {\it Multigrid Methods and Applications}, Springer, New York, 1985. · Zbl 0595.65106
[30] R. Hiptmair and J. Xu, {\it Nodal auxiliary space preconditioning in H(curl) and H(div) spaces}, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509. · Zbl 1153.78006
[31] X. Hu and X. Cheng, {\it Acceleration of a two-grid method for eigenvalue problems}, Math. Comp., 80 (2011), pp. 1287-1301. · Zbl 1232.65141
[32] X. Hu and X. Cheng, {\it Corrigendum to: “Acceleration of a two-grid method for eigenvalue problems},” Math. Comp., 84 (2015), pp. 2701-2704. · Zbl 1321.65164
[33] L. N. Trefethen and D. Bau, {\it Numerical Linear Algebra}, SIAM, Philadelphia, 1997. · Zbl 0874.65013
[34] H. Li and Y. Yang, {\it Adaptive finite element method based on multi-scale discretizations for eigenvalue problems}, Comput. Math. Appl., 65 (2013), pp. 1086-1102. · Zbl 1266.65196
[35] Q. Lin and G. Xie, {\it Acceleration of FEA for eigenvalue problems}, Bull. Sci., 26 (1981), pp. 449-452.
[36] Q. Lin and H. Xie, {\it A multi-level correction scheme for eigenvalue problems}, Math. Comp., 84 (2015), pp. 71-88. · Zbl 1307.65159
[37] P. Mao, R. H. Nochetto, and K. Siebert, {\it Convergence of adaptive finite element methods}, SIAM Rev., 44 (2002), pp. 631-658. · Zbl 1016.65074
[38] S. McCormick, ed., {\it Multigrid Methods}, Frontiers in Appl. Math. 3, SIAM, Philadelphia, 1987. · Zbl 0659.65094
[39] J. T. Oden and J. N. Reddy, {\it An Introduction to the Mathematical Theory of Finite Elements}, Dover, New York, 2012. · Zbl 0336.35001
[40] V. Shaidurov, {\it Multigrid Methods for Finite Elements}. Kluwer, Dordrecht, Netherlands, 1995. · Zbl 0837.65118
[41] I. H. Sloan, {\it Iterated Galerkin method for eigenvalue problems}, SIAM J. Numer. Anal., 13 (1976), pp. 753-760. · Zbl 0359.65052
[42] R. Verfürth, {\it A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques}, Wiley/Teubner, New York, 1996. · Zbl 0853.65108
[43] H. Wu and Z. Zhang, {\it Can we have superconvergent gradient recovery under adaptive meshes \(?\)}, SIAM J. Numer. Anal., 45 (2007), pp. 1701-1722. · Zbl 1152.65104
[44] J. Xu, {\it A new class of iterative methods for nonselfadjoint or indefinite problems}, SIAM J. Numer. Anal., 29 (1992), pp. 303-319. · Zbl 0756.65050
[45] J. Xu, {\it Two-grid discretization techniques for linear and nonlinear PDEs}, SIAM J. Numer. Anal., 33 (1996), pp. 1759-1777. · Zbl 0860.65119
[46] J. Xu and A. Zhou, {\it A two-grid discretization scheme for eigenvalue problems}, Math. Comput., 70 (1999), pp. 17-25. · Zbl 0959.65119
[47] J. Xu and A. Zhou, {\it Local and parallel finite element algorithms for eigenvalue problems}, Acta. Math. Appl. Sin. Engl. Ser., 18 (2002), pp. 185-200. · Zbl 1015.65060
[48] J. Xu, {\it Iterative methods by space decomposition and subspace correction}, SIAM Rev., 34 (1992), pp. 581-613. · Zbl 0788.65037
[49] Y. Yang and H. Bi, {\it A two-grid discretization scheme based on shifted-inverse power method}, SIAM J. Numer. Anal., 49 (2011), pp. 1602-1624. · Zbl 1236.65143
[50] Y. Zhang, Y. Yang, and J. Liu, {\it Highly efficient calculation schemes of finite element filter approach for the eigenvalue problem of electric field}, Math. Probl. Eng. (2012), 529498; doi:10.1155/2012/529498. · Zbl 1264.78040
[51] J. Zhou, X. Hu, L. Zhong, S. Shu, and L. Chen, {\it Two-grid methods for Maxwell eigenvalue problems}, SIAM J. Numer. Anal., 52 (2014), pp. 2027-2047. · Zbl 1304.78015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.