×

Strong phase transition, dark matter and vacuum stability from simple hidden sectors. (English) Zbl 1326.81256

Summary: Motivated by the possibility to explain dark matter abundance and strong electroweak phase transition, we consider simple extensions of the Standard Model containing singlet fields coupled with the Standard Model via a scalar portal. Concretely, we consider a basic portal model consisting of a singlet scalar with \(Z_2\) symmetry and a model containing a singlet fermion connected with the Standard Model fields via a singlet scalar portal. We perform a Monte Carlo analysis of the parameter space of each model, and we find that in both cases the dark matter abundance can be produced either via freeze-out or freeze-in mechanisms, but only in the latter model one can obtain also a strong electroweak phase transition required by the successful electroweak baryogenesis. We impose the direct search limits and consider systematically the possibility that the model produces only a subdominant portion of the dark matter abundance. We also study the renormalization group evolution of the couplings of the model to determine if the scalar sector of the model remains stable and perturbative up to high scales. With explicit examples of benchmark values of the couplings at weak scale, we show that this is possible. Models of this type are further motivated by the possibility that the excursions of the Higgs field at the end of inflation are large and could directly probe the instability region of the Standard Model.

MSC:

81V22 Unified quantum theories
81T17 Renormalization group methods applied to problems in quantum field theory
83F05 Relativistic cosmology
65C05 Monte Carlo methods
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Carmi, D.; Falkowski, A.; Kuflik, E.; Volansky, T., Interpreting LHC Higgs results from natural new physics perspective, J. High Energy Phys., 1207, 136 (2012)
[2] Espinosa, J.; Grojean, C.; Muhlleitner, M.; Trott, M., Fingerprinting Higgs suspects at the LHC, J. High Energy Phys., 1205, 097 (2012)
[3] Giardino, P. P.; Kannike, K.; Raidal, M.; Strumia, A., Reconstructing Higgs boson properties from the LHC and Tevatron data, J. High Energy Phys., 1206, 117 (2012)
[4] Alanne, T.; Di Chiara, S.; Tuominen, K., LHC data and aspects of new physics, J. High Energy Phys., 1401, 041 (2014)
[5] Aad, G., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, 716, 1-29 (2012)
[6] Chatrchyan, S., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, 716, 30-61 (2012)
[7] McDonald, J., Gauge singlet scalars as cold dark matter, Phys. Rev. D, 50, 3637-3649 (1994)
[8] Burgess, C.; Pospelov, M.; ter Veldhuis, T., The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B, 619, 709-728 (2001)
[9] Lopez Honorez, L.; Nezri, E.; Oliver, J. F.; Tytgat, M. H., The inert doublet model: an archetype for dark matter, J. Cosmol. Astropart. Phys., 0702, 028 (2007)
[10] Ruiz-Alvarez, J.; de S. Pires, C.; Queiroz, F. S.; Restrepo, D.; Rodrigues da Silva, P., On the connection of gamma-rays, dark matter and Higgs searches at LHC, Phys. Rev. D, 86, 075011 (2012)
[11] Lopez-Honorez, L.; Schwetz, T.; Zupan, J., Higgs portal, fermionic dark matter, and a Standard Model like Higgs at 125 GeV, Phys. Lett. B, 716, 179-185 (2012)
[12] Fairbairn, M.; Hogan, R., Singlet fermionic dark matter and the electroweak phase transition, J. High Energy Phys., 1309, 022 (2013)
[13] Alves, A.; Profumo, S.; Queiroz, F. S., The dark \(Z^\prime\) portal: direct, indirect and collider searches, J. High Energy Phys., 1404, 063 (2014)
[14] Hambye, T., Hidden vector dark matter, J. High Energy Phys., 0901, 028 (2009)
[15] Davoudiasl, H.; Lewis, I. M., Dark matter from hidden forces, Phys. Rev. D, 89, 055026 (2014)
[16] Kuzmin, V.; Rubakov, V.; Shaposhnikov, M., On the anomalous electroweak Baryon number nonconservation in the early universe, Phys. Lett. B, 155, 36 (1985)
[17] Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M. E., Is there a hot electroweak phase transition at \(m(H)\) larger or equal to \(m(W)\)?, Phys. Rev. Lett., 77, 2887-2890 (1996)
[18] Rummukainen, K.; Tsypin, M.; Kajantie, K.; Laine, M.; Shaposhnikov, M. E., The universality class of the electroweak theory, Nucl. Phys. B, 532, 283-314 (1998)
[19] Profumo, S.; Ramsey-Musolf, M. J.; Shaughnessy, G., Singlet Higgs phenomenology and the electroweak phase transition, J. High Energy Phys., 0708, 010 (2007)
[20] Espinosa, J. R.; Konstandin, T.; Riva, F., Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys. B, 854, 592-630 (2012) · Zbl 1229.81329
[21] McDonald, J., Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett., 88, 091304 (2002)
[22] Cline, J. M.; Kainulainen, K., Electroweak baryogenesis and dark matter from a singlet Higgs, J. Cosmol. Astropart. Phys., 1301, 012 (2013)
[23] Cline, J. M.; Kainulainen, K.; Scott, P.; Weniger, C., Update on scalar singlet dark matter, Phys. Rev. D, 88, 055025 (2013)
[24] Li, T.; Zhou, Y.-F., Strongly first order phase transition in the singlet fermionic dark matter model after LUX
[25] Aprile, E., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett., 107, 131302 (2011)
[26] Akerib, D., First results from the LUX dark matter experiment at the Sanford underground research facility, Phys. Rev. Lett., 112, 091303 (2014)
[27] Duda, G.; Gelmini, G.; Gondolo, P., Detection of a subdominant density component of cold dark matter, Phys. Lett. B, 529, 187-192 (2002)
[28] Profumo, S.; Sigurdson, K.; Ubaldi, L., Can we discover multi-component WIMP dark matter?, J. Cosmol. Astropart. Phys., 0912, 016 (2009)
[29] Aoki, M.; Duerr, M.; Kubo, J.; Takano, H., Multi-component dark matter systems and their observation prospects, Phys. Rev. D, 86, 076015 (2012)
[30] Lee, B. W.; Weinberg, S., Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett., 39, 165-168 (1977)
[31] Gondolo, P.; Gelmini, G., Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B, 360, 145-179 (1991)
[32] Ade, P., Planck 2013 results. XVI. Cosmological parameters
[34] Chatrchyan, S., Search for the standard model Higgs boson produced in association with a \(W\) or a \(Z\) boson and decaying to bottom quarks, Phys. Rev. D, 89, 012003 (2014)
[35] Chatrchyan, S., Evidence for the 125 GeV Higgs boson decaying to a pair of \(τ\) leptons, J. High Energy Phys., 1405, 104 (2014)
[37] Chatrchyan, S., Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, J. High Energy Phys., 1401, 096 (2014)
[38] Chatrchyan, S., Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D, 89, 092007 (2014)
[39] Peskin, M. E.; Takeuchi, T., A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett., 65, 964-967 (1990)
[40] Dittmaier, S., Handbook of LHC Higgs cross sections: 1. Inclusive observables
[41] Hall, L. J.; Jedamzik, K.; March-Russell, J.; West, S. M., Freeze-in production of FIMP dark matter, J. High Energy Phys., 1003, 080 (2010) · Zbl 1271.83088
[42] Fedderke, M. A.; Chen, J.-Y.; Kolb, E. W.; Wang, L.-T., The fermionic dark matter Higgs portal: an effective field theory approach
[43] Grimus, W.; Lavoura, L.; Ogreid, O.; Osland, P., The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B, 801, 81-96 (2008) · Zbl 1189.81254
[44] Beringer, J., Review of particle physics (RPP), Phys. Rev. D, 86, 010001 (2012)
[45] Degrassi, G.; Di Vita, S.; Elias-Miro, J.; Espinosa, J. R.; Giudice, G. F., Higgs mass and vacuum stability in the Standard Model at NNLO, J. High Energy Phys., 1208, 098 (2012)
[46] Antipin, O.; Gillioz, M.; Krog, J.; Mølgaard, E.; Sannino, F., Standard model vacuum stability and Weyl consistency conditions, J. High Energy Phys., 1308, 034 (2013)
[47] Haba, N.; Ishida, H.; Kaneta, K.; Takahashi, R., Vanishing Higgs potential at the Planck scale in singlets extension of the standard model
[48] Ade, P., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett., 112, 241101 (2014)
[49] Espinosa, J.; Giudice, G.; Riotto, A., Cosmological implications of the Higgs mass measurement, J. Cosmol. Astropart. Phys., 0805, 002 (2008)
[50] Kobakhidze, A.; Spencer-Smith, A., Electroweak vacuum (in)stability in an inflationary universe, Phys. Lett. B, 722, 130-134 (2013) · Zbl 1311.81241
[51] Spencer-Smith, A., Higgs vacuum stability in a mass-dependent renormalisation scheme
[52] Fairbairn, M.; Hogan, R., Electroweak vacuum stability in light of BICEP2, Phys. Rev. Lett., 112, 201801 (2014)
[53] Barger, V.; Everett, L. L.; Jackson, C.; Shaughnessy, G., Higgs-pair production and measurement of the triscalar coupling at LHC \((8, 14)\), Phys. Lett. B, 728, 433-436 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.