×

Wave operator bounds for one-dimensional Schrödinger operators with singular potentials and applications. (English) Zbl 1314.81085

Summary: Boundedness of wave operators for Schrödinger operators in one space dimension for a class of singular potentials, admitting finitely many Dirac delta distributions, is proved. Applications are presented to, for example, dispersive estimates and commutator bounds.{
©2011 American Institute of Physics}

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
46F10 Operations with distributions and generalized functions
34D15 Singular perturbations of ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agmon, S., Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 2, 151 (1975) · Zbl 0315.47007
[2] D’Ancona, D.; Fanelli, L., \(L^p\)-boundedness of the wave operator for the one dimensional Schrödinger operator, Commun. Math. Sci., 268, 415 (2006) · Zbl 1127.35053 · doi:10.1007/s00220-006-0098-x
[3] Deift, P.; Trubowitz, E., Inverse scattering on the line, Commun. Pure Appl. Math., 32, 121 (1979) · Zbl 0388.34005 · doi:10.1002/cpa.3160320202
[4] Duchêne, V.; Weinstein, M. I., Scattering, homogenization and interface effects for oscillatory potentials with strong singularities (2010)
[5] Folland, G. B., Introduction to Partial Differential Equations (1995) · Zbl 0841.35001
[6] Fukuizumi, R.; Jeanjean, L., Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential, Discrete Contin. Dyn. Syst., 21, 121 (2008) · Zbl 1144.35465 · doi:10.3934/dcds.2008.21.121
[7] Fukuizumi, R.; Ohta, R.; Ozawa, T., Nonlinear Schrödinger equation with a point defect, Ann. Inst. Henri. Poincaré Anal. Non Linéaire, 25, 837 (2008) · Zbl 1145.35457 · doi:10.1016/j.anihpc.2007.03.004
[8] Goodman, R. H.; Holmes, P. J.; Weinstein, M. I., Strong NLS soliton-defect interactions, Phys. D (Nonlinear Phenomena), 192, 215 (2004) · Zbl 1061.35132 · doi:10.1016/j.physd.2004.01.021
[9] Griffiths, D. J.; Steinke, C. A., Waves in locally periodic media, Am. J. Phys., 69, 137 (2001) · doi:10.1119/1.1308266
[10] Griffiths, D. J.; Taussig, N. F., Scattering from a locally periodic potential, Am. J. Phys., 60, 883 (1992) · doi:10.1119/1.17008
[11] Holmer, J.; Marzuola, J.; Zworski, M., Fast soliton scattering by delta impurities, Commun. Math. Phys., 274, 187 (2007) · Zbl 1126.35068 · doi:10.1007/s00220-007-0261-z
[12] Holmer, J.; Marzuola, J.; Zworski, M., Soliton splitting by external delta potentials, J. Nonlinear Sci., 17, 349 (2007) · Zbl 1128.35384 · doi:10.1007/s00332-006-0807-9
[13] Holmer, J.; Zworski, M., Slow soliton interaction with delta impurities, J. Mod. Dyn., 1, 689 (2007) · Zbl 1137.35060
[14] Hörmander, H., The Analysis of Linear Partial Differential Operators. II: Differential Operators with Constant Coefficients (2005) · Zbl 1062.35004
[15] Jackson, R. K.; Weinstein, M. I., Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation, J. Stat. Phys., 116, 881 (2004) · Zbl 1138.81015 · doi:10.1023/B:JOSS.0000037238.94034.75
[16] Krieger, J.; Schlag, W., Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Am. Math. Soc., 19, 815 (2006) · Zbl 1281.35077 · doi:10.1090/S0894-0347-06-00524-8
[17] Le Coz, S.; Fukuizumi, R.; Fibich, G.; Ksherim, B.; Sivan, Y., Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Physica D, 237, 1103 (2008) · Zbl 1147.35356 · doi:10.1016/j.physd.2007.12.004
[18] Marzuola, J.; Metcalfe, J.; Tataru, D., Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal., 255, 1497 (2008) · Zbl 1180.35187 · doi:10.1016/j.jfa.2008.05.022
[19] Marzuola, J. L. and Weinstein, M. I., “Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii Equations,” Discrete Contin. Dyn. Syst.28 (in press). · Zbl 1223.35288
[20] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. IV. Analysis of Operators (1978) · Zbl 0401.47001
[21] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. III. Scattering Theory (1979) · Zbl 0405.47007
[22] Schechter, M., Operator Methods in Quantum Mechanics (1981) · Zbl 0456.47012
[23] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, 30 (1970) · Zbl 0207.13501
[24] Sulem, C.; Sulem, P.-L., The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, 139 (1999) · Zbl 0928.35157
[25] Tang, S. H. and Zworski, M., “Potential scattering on the real line,” Lecture Notes (unpublished). See: .
[26] Weder, R., The \documentclass[12pt]{minimal}\( \begin{document}W_{k,p}\end{document} \)-continuity of the Schrödinger wave operators on the line, Commun. Math. Phys., 208, 507 (1999) · Zbl 0945.34070 · doi:10.1007/s002200050767
[27] Yajima, K., The \documentclass[12pt]{minimal}\( \begin{document}W^{k,p}\end{document} \)-continuity of wave operators for Schrödinger operators, J. Math. Soc. Jpn., 47, 551 (1995) · Zbl 0837.35039 · doi:10.2969/jmsj/04730551
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.