×

Fractional BVPs with strong time singularities and the limit properties of their solutions. (English) Zbl 1312.34025

This paper is interesting as the author establishes a relation between the solutions of singular BVP of the ordinary differential equations of the type \[ U''+ \frac{a}{t} u'=f(t,u,u')\tag{1} \] satisfying the boundary conditions \[ u(0)=A,~ u(1)=B,~\text{ and }~u'(0)=0, \] and a sequence of solutions of singular BVPs of fractional differential equations of the corresponding type \[ \frac{d}{dt} {^{c}D^{\alpha _n} } u +\frac{a}{t} D^{\alpha _n}u = f(t,u, ^{c}D^{\beta _n}u)\tag{2} \] with the boundary conditions given by \[ u(0)=A,~ u(1)=B~\text{ and }~^{c}D^{\alpha _n}u(t) |_{t=0}=0 \] with \(a<0,~0< \beta _n \leq \alpha _n <1\) and \(\lim_{n \rightarrow \infty} \beta_n=1.\) They show that the sequence of solutions of (2) will converge to a solution of the ordinary BVP (1) under certain conditions.
The first part of the paper deals with the existence of solutions of the singular BVP of the form \[ \frac{d}{dt} {^{c}D^{\alpha}}u +\frac{a}{t} D^{\alpha }u = H(u)\tag{3} \] with the corresponding boundary condition \[ u(0)=A,~ u(1)=B,~\text{ and }~{^{c}D^{\alpha}}u(t) |_{t=0}=0, \] with \(a<0,~\alpha \in (0,1).\) Observe that equation (3) is a generalization of (2). The existence result is proved using the nonlinear Leray-Schauder Alternative.
The second part of the paper deals with criteria and results concerning the convergence of sequence of solutions of (2) to a solution of (1).

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34B16 Singular nonlinear boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abraham F.F., Homogeneous Nucleation Theory, Academic Press, New York, NY, 1974;
[2] Bai Z., Qiu T., Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., 2009, 215, 2761-2767 http://dx.doi.org/10.1016/j.amc.2009.09.017; · Zbl 1185.34004
[3] Bongiorno, B., Scriven, L.E., Davis H., Molecular theory of fluid interfaces, J. Colloid and Interface Sci. 1976, 57(3), 462-475 http://dx.doi.org/10.1016/0021-9797(76)90225-3;
[4] A. Cabada, A., Staněk, S., Functional fractional boundary value problems with ϕ-Laplacian, Appl. Math. Comput., 2012, 219, 1383-1390 http://dx.doi.org/10.1016/j.amc.2012.07.062; · Zbl 1296.34013
[5] Caballero Mena, J., Harjani, J., Sadarangani, K., Positive solutions for a class of singular fractional boundary value problems, Comput. Math. Appl., 2011, 62, 1325-1332 http://dx.doi.org/10.1016/j.camwa.2011.04.013; · Zbl 1235.34010
[6] Deimling, K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7; · Zbl 0559.47040
[7] Diethelm, K., The Analysis of Fractional Differential Equations, Lectures Notes in Mathematics, Springer, Berlin, 2010 http://dx.doi.org/10.1007/978-3-642-14574-2; · Zbl 1215.34001
[8] Feichtinger, A., Rachůnková, I., Staněk, S., Weinmüller, E., Periodic BVPs in ODRs with time singularities, Comput. Math. Appl., 2011, 62, 2058-2070 http://dx.doi.org/10.1016/j.camwa.2011.06.048; · Zbl 1231.34072
[9] Fife, P.C., Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, 28, Springer, 1979; · Zbl 0403.92004
[10] Ford, W.F., Pennline, J.A., Singular non-linear two-point boundary value problems: Existence and uniqueness, Nonlinear Anal., 2009, 71, 1059-1072 http://dx.doi.org/10.1016/j.na.2008.11.045; · Zbl 1172.34015
[11] Gatica, J.A., Oliker, V., Waltman, P., Singular nonlinear boundary value problems for second-order ordinary differential equations, J. Differential Equations, 1989, 79, 62-78 http://dx.doi.org/10.1016/0022-0396(89)90113-7; · Zbl 0685.34017
[12] Gouin, H., Rotoli, G., An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids, Mech. Research Communic., 1997, 24, 255-260 http://dx.doi.org/10.1016/S0093-6413(97)00022-0; · Zbl 0899.76064
[13] Hammerling, R., Koch, O., Simon. C., Weinmüller, E., Numerical solution of eigenvalue problems in electronic structure computations, J. Comp. Phys., 2010, 181, 1557-1561.; · Zbl 1216.65096
[14] Jleli, M., Samet, B., On positive solutions for a class of singular nonlinear fractional differential equations, Bound. Value Probl. 2012, 2012:73 http://www.boundaryvalueproblems.com/content/2012/1/73 http://dx.doi.org/10.1186/1687-2770-2012-73; · Zbl 1279.34009
[15] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier B.V., Amsterdam, The Netherlands, 2006; · Zbl 1092.45003
[16] Klimek, K., Agarwal, O.P., Fractional Sturm-Liouville problem, Comput. Math. Appl., 2013, 66, 795-812 http://dx.doi.org/10.1016/j.camwa.2012.12.011; · Zbl 1348.34018
[17] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E., Efficient numerical solution of the density profile equation in hydrodynamics, J. Sci. Comp., 2007, 32, 411-424 http://dx.doi.org/10.1007/s10915-007-9141-0; · Zbl 1178.76280
[18] Linde, A.P., Particle Physics and Inflationary Cosmology, Harwood Academic, Chur, Switzerland, 1990;
[19] Liu, B., Liu. Y., Positive solutions of a two-point boundary value problem for singular fractional differential equations in Banach space, J. Funct. Spaces and Appl., 2013, # 585639; · Zbl 1275.34009
[20] Liu, Y., Nieto, J.J., Otero-Zarraquinos, Ò., Existence results for a coupled system of nonlinear singular fractional differential equations with impulse effects, Math. Probl. Eng., 2013, # 498781; · Zbl 1296.34024
[21] Qiu, T., Bai, Z., Existence of positive solutions for singular fractional differential equations, Electron. J. Differential Equations, 2008 (146) (2008); · Zbl 1172.34313
[22] Rachůnková, I., Staněk, S., Weinmüller, E., and Zenz, M., Limit properties of solutions of singular second-order differential equations, Bound. Value Probl. 2009 (2009) 28, # 905769; · Zbl 1189.34048
[23] Rachůnková, I., Staněk, S., Weinmüller, E., Zenz, M., Neumann problems with time singularities, Comput. Math. Appl., 2010, 60, 722-733 http://dx.doi.org/10.1016/j.camwa.2010.05.019; · Zbl 1201.34038
[24] Staněk, S., Limit properties of positive solutions of fractional boundary value problems, Appl. Math. Comput., 2012, 219, 2361-2370. http://dx.doi.org/10.1016/j.amc.2012.09.008; · Zbl 1308.34104
[25] Stojanovic, M., Singular fractional evolution differential equations, Cent. Eur. J. Phys., (in press);
[26] Su, X., Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 2009, 22, 64-69 http://dx.doi.org/10.1016/j.aml.2008.03.001; · Zbl 1163.34321
[27] Vong, S., Positive solutions of singular fractional differential equations with integral boundary conditions, Math. Comput. Modelling, 2013, 57, 1053-1059. http://dx.doi.org/10.1016/j.mcm.2012.06.024;
[28] Wang, C., Wand, R., Wang, S., Yang, C., Positive solution of singular boundary value problem for a nonlinear fractional differential equation, Bound. Value Probl. 2011, # 297026;
[29] Zhang, S., Nonnegative solution for singular nonlinear fractional differential equation with coefficient that changes sign, Positivity, 2008, 12, 711-724 http://dx.doi.org/10.1007/s11117-008-2030-4; · Zbl 1172.26306
[30] Zhang, X., Liu, L., Wu, Y., The uniqueness of positive solution for a singular fractional differential system involving derivatives, Commun. Nonlinear Sci. Numer. Simulat., 2013, 18, 1400-1409 http://dx.doi.org/10.1016/j.cnsns.2012.08.033; · Zbl 1283.34006
[31] Zhou, W., Positive solutions for a singular second order boundary value problem, Appl. Math. E-Notes, 2009, 9, 154-159; · Zbl 1178.34032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.