×

A GPU-accelerated direct-sum boundary integral Poisson-Boltzmann solver. (English) Zbl 1310.78017

Summary: We present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up our method, we take advantage of the parallel nature of the boundary integral formulation and parallelize the schemes within CUDA shared memory architecture on GPU. The schemes use only \(11N+6N_c\) size-of-double device memory for a biomolecule with \(N\) triangular surface elements and \(N_c\) partial charges. Numerical tests of these schemes show well-maintained accuracy and fast convergence. The GPU implementation using one GPU card (Nvidia Tesla M2070) achieves 120-150X speed-up to the implementation using one CPU (Intel L5640 2.27 GHz). With our approach, solving PB equations on well-discretized molecular surfaces with up to 300,000 boundary elements will take less than about 10 min, hence our approach is particularly suitable for fast electrostatics computations on small to medium biomolecules.

MSC:

78M15 Boundary element methods applied to problems in optics and electromagnetic theory
78A30 Electro- and magnetostatics
78-04 Software, source code, etc. for problems pertaining to optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baker, N. A., Improving implicit solvent simulations: a Poisson-centric view, Curr. Opin. Struct. Biol., 15, 137-143 (2005)
[2] Richards, F. M., Areas, volumes, packing and protein structure, Annu. Rev. Biophys. Bioeng., 6, 151-176 (1977)
[3] Connolly, M. L., Molecular surface triangulation, J. Appl. Crystallogr., 18, 499-505 (1985)
[4] Kirkwood, J. G., Theory of solution of molecules containing widely separated charges with special application to Zwitterions, J. Chem. Phys., 7, 351-361 (1934) · Zbl 0009.27504
[5] Holst, M.; Saied, F., Multigrid solution of the Poisson-Boltzmann equation, J. Comput. Chem., 14, 105-113 (1993)
[6] Rocchia, W.; Alexov, E.; Honig, B., Extending the applicability of the nonlinear Poisson-Boltzmann equation: multiple dielectric constants and multivalent ions, J. Phys. Chem. B, 105, 6507-6514 (2001)
[7] Im, W.; Beglov, D.; Roux, B., Continuum solvation model: computtation of electrostatic forces from numberical solutions to the Poisson-Boltzmann equation, Comput. Phys. Comm., 111, 59-75 (1998) · Zbl 0935.78019
[8] Luo, R.; David, L.; Gilson, M. K., Accelerated Poisson-Boltzmann calculations for static and dynamic systems, J. Comput. Chem., 23, 1244-1253 (2002)
[9] Baker, N. A.; Sept, D.; Holst, M. J.; McCammon, J. A., The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers, IBM J. Res. Dev., 45, 427-438 (2001)
[10] Qiao, Z. H.; Li, Z. L.; Tang, T., A finite difference scheme for solving the nonlinear Poisson-Boltzmann equation modeling charged spheres, J. Comput. Math., 24, 252-264 (2006) · Zbl 1105.78015
[11] Chen, D.; Chen, Z.; Chen, C. J.; Geng, W. H.; Wei, G. W., MIBPB: a software package for electrostatic analysis, J. Comput. Chem., 32, 756-770 (2011)
[12] Juffer, A.; Botta, E.; van Keulen, B.; van der Ploeg, A.; Berendsen, H., The electric potential of a macromolecule in a solvent: a fundamental approach, J. Comput. Phys., 97, 144-171 (1991) · Zbl 0743.65094
[13] Boschitsch, A.; Fenley, M.; Zhou, H.-X., Fast boundary element method for the linear Poisson-Boltzmann equation, J. Phys. Chem. B, 106, 2741-2754 (2002)
[14] Lu, B. Z.; Cheng, X. L.; Huang, J. F.; McCammon, J. A., Order \(N\) algorithm for computation of electrostatic interactions in biomolecular systems, Proc. Natl. Acad. Sci. USA, 103, 19314-19319 (2006)
[15] Yokota, R.; Bardhan, J. P.; Knepley, M. G.; Barba, L. A.; Hamada, T., Biomolecular electrostatics using a fast multipole BEM on up to 512 GPUS and a billion unknowns, Comput. Phys. Comm., 182, 1272-1283 (2011) · Zbl 1259.78044
[16] Altman, M. D.; Bardhan, J. P.; White, J. K.; Tidor, B., Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson-Boltzmann equation with curved boundary elements, J. Comput. Chem., 30, 132-153 (2009)
[18] Bordner, A.; Huber, G., Boundary element solution of the linear Poisson-Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution, J. Comput. Chem., 24, 353-367 (2003)
[19] Liang, J.; Subranmaniam, S., Computation of molecular electrostatics with boundary element methods, Biophys. J., 73, 1830-1841 (1997)
[20] Vorobjev, Y. N.; Scheraga, H. A., A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent, J. Comput. Chem., 18, 569-583 (1997)
[21] Bajaj, C.; Chen, S.-C.; Rand, A., An efficient higher-order fast multipole boundary element solution for Poisson-Boltzmann-based molecular electrostatics, SIAM J. Sci. Comput., 33, 826-848 (2011) · Zbl 1227.92005
[22] Goetz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Grand, S. L.; Walker, R. C., Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born, J. Chem. Theory Comput., 8, 1542-1555 (2012)
[24] Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K., Scalable molecular dynamics with NAMD, J. Comput. Chem., 26, 1781-1802 (2005)
[25] Stone, J. E.; Hardy, D. J.; Ufimtsev, I. S.; Schulten, K., GPU-accelerated molecular modeling coming of age, J. Mol. Graph. Modell., 29, 116-125 (2010)
[26] Nyland, L.; Harris, M.; Prins, J., Fast \(N\)-body simulation with CUDA, (GPU Gem, vol. 3 (2009)), 677-695, (Chapter 31)
[27] Burtscher, M.; Pingali, K., An efficient CUDA implementation of the tree-based Barnes Hut \(n\)-body algorithm, (GPU Computing Gems Emerald Edition (2011)), 75-92, (Chapter 6)
[28] Barnes, J.; Hut, P., A hierarchical \(O(N \log N)\) force-calculation algorithm, Nature, 324, 446-449 (1986)
[29] Yokota, R.; Bardhan, J. P.; Knepley, M. G.; Barba, L. A.; Hamada, T., Biomolecular electrostatics using a fast multipole BEM on up to 512 GPUs and a billion unknowns, Comput. Phys. Comm., 182, 1272-1283 (2010) · Zbl 1259.78044
[30] Yong, B. J.; Lenhoff, A. M., A boundary element method for molecular electrostatics with electrolyte effects, J. Comput. Chem., 11, 1080-1086 (1990)
[31] Sanner, M. F.; Olson, A. J.; Spehner, J. C., Reduced surface: an efficient way to compute molecular surfaces, Biopolymers, 38, 305-320 (1996)
[32] Lu, B. Z.; Cheng, X. L.; McCammon, J. A., New-version-fast-multipole-method accelerated electrostatic calculations in biomolecular systems, J. Comput. Phys., 226, 1348-1366 (2007) · Zbl 1121.92007
[33] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-859 (1986) · Zbl 0599.65018
[34] MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, J. D.; Evanseck, M. J.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem., 102, 3586-3616 (1998)
[35] Geng, W. H.; Yu, S. N.; Wei, G. W., Treatment of charge singularities in the implicit solvent models, J. Chem. Phys., 128, 114106 (2007)
[36] Bates, P.; Wei, G. W.; Zhao, S., Minimal molecular surfaces and their applications, J. Comput. Chem., 29, 380-391 (2008)
[37] Chen, M. X.; Lu, B. Z., TMSmesh: a robust method for molecular surface mesh generation using a trace technique, J. Chem. Theory Comput., 7, 203-212 (2011)
[38] Xu, D.; Zhang, Y., Generating triangulated macromolecular surfaces by Euclidean distance transform, PLoS One, 4, 12, e8140 (2013)
[39] Geng, W. H.; Wei, G. W., Multiscale molecular dynamics using the matched interface and boundary method, J. Comput. Phys., 230, 435-457 (2011) · Zbl 1246.82028
[40] Lu, Q.; Luo, R., A Poisson-Boltzmann dynamics method with nonperiodic boundary condition, J. Chem. Phys., 119, 11035-11047 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.