×

Remarks on unboundedness of set-valued Itô stochastic integrals. (English) Zbl 1303.60044

Summary: The paper deals with set-valued stochastic integrals which are defined as a random multifunctions. Integrable boundedness of a such integral is one of the most important features in potential applications. Unfortunately, up to now there were no correct proofs of such property. Surprisingly, also a negative answer to this problem is still not explained correctly. Hence the problem seems to be still undetermined. We shall show that in general the answer is negative. We shall provide several relatively simple examples both in convex and nonconvex-valued case. As a consequence, we will show that under some restrictions on the class of selections of the integrand the integrable boundedness of set-valued Itô’s integral is equivalent to its single valuedness.

MSC:

60H05 Stochastic integrals
28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adler, R. J., An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, IMS Lecture Notes Monogr. Ser. (1990), Inst. Math. Statist.: Inst. Math. Statist. Hayward, CA · Zbl 0747.60039
[2] Ahmed, N. U., Optimal relaxed controls for nonlinear infinite dimensional stochastic differential inclusions, Lect. Notes Pure Appl. Math., 160, 1-19 (1994) · Zbl 0854.49006
[3] Ahmed, N. U., Nonlinear stochastic differential inclusions on Banach space, Stoch. Anal. Appl., 12, 1-10 (1994) · Zbl 0789.60052
[4] Ahmed, N. U., Optimal control of impulsive stochastic evolution inclusions, Discuss. Math. Differ. Incl. Control Optim., 22, 2, 155-184 (2002) · Zbl 1044.49016
[5] Aubin, J. P.; Da Prato, G., The viability theorem for stochastic differential inclusions, Stoch. Anal. Appl., 16, 1-15 (1998) · Zbl 0931.60059
[6] Aubin, J. P.; Frankowska, H., Set-Valued Analysis (1990), Birkhäuser: Birkhäuser Boston
[7] Aumann, R., Integrals of set-valued functions, J. Math. Anal. Appl., 12, 1-12 (1965) · Zbl 0163.06301
[8] Bocşan, G., On Wiener stochastic integrals of multifunctions, Univ. Tim. FSN, 87, 1-7 (1987)
[9] Dudley, R. M., Uniform Central Limit Theorems (1999), Cambridge Univ. Press · Zbl 0951.60033
[10] Fernique, X., Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens (1997), Publications du Centre de Recherches Mathématiques: Publications du Centre de Recherches Mathématiques Montréal · Zbl 0902.60030
[11] Fryszkowski, A., Fixed Point Theory for Decomposable Sets (2004), Kluwer Acad. Publ.: Kluwer Acad. Publ. New York · Zbl 1086.47004
[13] Hiai, F.; Umegaki, H., Integrals, conditional expectations and martingales for multivalued functions, J. Multivariate Anal., 7, 147-182 (1977) · Zbl 0368.60006
[14] Hu, S.; Papageorgiou, N., Handbook of Multivalued Analysis, vol. 1: Theory (1997), Kluwer Acad. Publ.: Kluwer Acad. Publ. Boston
[15] Jakubowski, A.; Kamenskii, M.; Raynaud de Fitte, P., Existence of weak solutions to stochastic evolution inclusions, Stoch. Anal. Appl., 23, 723-749 (2005) · Zbl 1077.60044
[16] Jung, E. J.; Kim, J. H., On set-valued stochastic integrals, Stoch. Anal. Appl., 21, 2, 401-418 (2003) · Zbl 1049.60048
[17] Karatzas, J.; Shreve, S. E., Brownian Motion and Stochastic Calculus (1991), Springer · Zbl 0734.60060
[18] Kim, B. K.; Kim, J. H., Stochastic integrals of set-valued processes and fuzzy processes, J. Math. Anal. Appl., 236, 480-502 (1999) · Zbl 0954.60043
[19] Kisielewicz, M., Set-valued stochastic integrals and stochastic inclusions, Discuss. Math., 15, 61-74 (1995)
[20] Kisielewicz, M., Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl., 15, 5, 783-800 (1997) · Zbl 0891.93070
[21] Kisielewicz, M., Weak compactness of solution sets to stochastic differential inclusions with convex right hand sides, Topol. Methods Nonlinear Anal., 18, 149-169 (2001) · Zbl 1139.60331
[22] Kisielewicz, M., Stochastic differential inclusions and diffusion processes, J. Math. Anal. Appl., 334, 1039-1054 (2007) · Zbl 1123.60059
[23] Kisielewicz, M., Stochastic representation of partial differential inclusions, J. Math. Anal. Appl., 353, 592-606 (2009) · Zbl 1178.60049
[24] Kisielewicz, M., Some properties of set-valued stochastic integrals, J. Math. Anal. Appl., 388, 984-995 (2012) · Zbl 1235.60058
[25] Kisielewicz, M., Stochastic Differential Inclusions and Applications (2013), Springer: Springer New York · Zbl 1277.93002
[26] Kisielewicz, M., Martingale representation theorem for set-valued martingales, J. Math. Anal. Appl., 409, 111-118 (2014) · Zbl 1306.60044
[27] Krasińska, J.; Michta, M., A note on stochastic inclusions approach for fuzzy stochastic differential equations driven by semimartingales, Dynam. Systems Appl., 22, 503-516 (2013) · Zbl 1296.60140
[28] Li, J.; Li, Sh., Set-valued stochastic Lebesgue integral and representation theorems, Int. J. Comput. Intell. Syst., 1, 2, 177-187 (2008)
[29] Li, Sh.; Ren, A., Representation theorems, set-valued and fuzzy set-valued Itô integral, Fuzzy Sets and Systems, 158, 949-962 (2007) · Zbl 1119.60039
[30] Malinowski, M.; Michta, M., Set-valued stochastic integral equations driven by martingales, J. Math. Anal. Appl., 394, 30-47 (2012) · Zbl 1246.60090
[31] Malinowski, M.; Michta, M., The interrelation between stochastic differential inclusions and set-valued stochastic differential equations, J. Math. Anal. Appl., 408, 733-743 (2013) · Zbl 1317.34141
[32] Michta, M., Stochastic inclusions with multivalued integrators, Stoch. Anal. Appl., 20, 4, 847-862 (2002) · Zbl 1018.60042
[33] Michta, M., Optimal solutions to stochastic differential inclusions, Appl. Math., 29, 4, 387-398 (2002) · Zbl 1044.93062
[34] Michta, M., On weak solutions to stochastic differential inclusions driven by semimartingales, Stoch. Anal. Appl., 22, 5, 1341-1361 (2004) · Zbl 1059.93125
[35] Michta, M., The upper and lower solution method for stochastic inclusions with discontinuous multivalued mappings, Stoch. Anal. Appl., 26, 1181-1200 (2008) · Zbl 1153.60038
[36] Michta, M., On set-valued stochastic integrals and fuzzy stochastic equations, Fuzzy Sets and Systems, 177, 1-19 (2011) · Zbl 1255.60006
[37] Motyl, J., On the solutions of stochastic differential inclusions, J. Math. Anal. Appl., 192, 117-132 (1995) · Zbl 0826.60053
[38] Motyl, J., Existence of solutions of set-valued Itô equation, Bull. PAN, 46, 4, 419-430 (1998) · Zbl 0916.93069
[39] Motyl, J., Viable solutions of set-valued stochastic equations, Optimization, 48, 157-176 (2000) · Zbl 0964.93075
[40] Motyl, J., Stochastic Itô inclusion with upper separated multifunctions, J. Math. Anal. Appl., 400, 505-509 (2013) · Zbl 1267.60066
[41] Ogura, Y., On stochastic differential equations with set coefficients and Black-Scholes model, (Proc. 8th Int. Conf. on Intelligent Technologies. Proc. 8th Int. Conf. on Intelligent Technologies, Sydney (2007)), 300-304
[42] Schmelzer, B., Set-valued assessments of solutions to stochastic differential equations with random set parameters, J. Math. Anal. Appl., 400, 425-438 (2013) · Zbl 1261.60058
[43] Zhang, J.; Li, S.; Mitoma, I.; Okazaki, Y., On set-valued stochastic integrals in a M-type 2 Banach space, J. Math. Anal. Appl., 350, 216-233 (2009) · Zbl 1155.60021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.