×

Some aspects of modeling dependence in copula-based Markov chains. (English) Zbl 1301.60089

Summary: Dependence coefficients have been widely studied for Markov processes defined by a set of transition probabilities and an initial distribution. This work clarifies some aspects of the theory of dependence structure of Markov chains generated by copulas that are useful in time series econometrics and other applied fields. The main aim of this paper is to clarify the relationship between the notions of geometric ergodicity and geometric \(\rho \)-mixing; namely, to point out that for a large number of well known copulas, such as Clayton, Gumbel or Student, these notions are equivalent. Some of the results published in the last years appear to be redundant if one takes into account this fact. We apply this equivalence to show that any mixture of Clayton, Gumbel or Student copulas generates both geometrically ergodic and geometric \(\rho \)-mixing stationary Markov chains, answering in this way an open question in the literature. We shall also point out that a sufficient condition for \(\rho \)-mixing, used in the literature, actually implies Doeblin recurrence.

MSC:

60J35 Transition functions, generators and resolvents
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
62H05 Characterization and structure theory for multivariate probability distributions; copulas
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] B.K. Beare, Archimedean copulas and temporal dependence, in: Econometric Theory, University of California at San Diego, Economics Working Paper Series 1549539, 2010 (in press).; B.K. Beare, Archimedean copulas and temporal dependence, in: Econometric Theory, University of California at San Diego, Economics Working Paper Series 1549539, 2010 (in press). · Zbl 1281.62143
[2] Beare, B. K., Copulas and temporal dependence, Econometrica, 395-410 (2010) · Zbl 1202.91271
[3] Bradley, R. C., Introduction to Strong Mixing Conditions, vols. 1, 2, 3 (2007), Kendrick Press: Kendrick Press Heber City · Zbl 1133.60001
[4] Breiman, L.; Friedman, J. H., Estimating optimal transformations for multiple regression and correlation, J. Amer. Statist. Assoc., 80, 580-598 (1985) · Zbl 0594.62044
[5] Bryc, W., Conditional moment representations for dependent random variables, Electron. J. Probab., 1, 1-14 (1996) · Zbl 0891.60004
[6] Chan, K.; Tong, H., Chaos: A Statistical Perspective (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0977.62002
[7] Chen, X.; Fan, Y., Estimation of copula-based semiparametric time series models, J. Econometrics, 130, 307-335 (2006) · Zbl 1337.62201
[8] Chen, X.; Wu, W. B.; Yi, Y., Efficient estimation of copula-based semi-parametric Markov models, Ann. Statist., 37, 4214-4253 (2009) · Zbl 1191.62140
[9] Conway, J. B., A Course in Functional Analysis (1990), Springer-Verlag: Springer-Verlag New York · Zbl 0706.46003
[10] Darsow, W. F.; Nguyen, B.; Olsen, E. T., Copulas and Markov processes, Illinois J. Math., 36, 600-642 (1992) · Zbl 0770.60019
[11] de Vries, C. G.; Zhou, C., Discussion of “Copulas: tales and facts”, by Thomas Mikosch, Extremes, 9, 23-25 (2006)
[12] Gagliardini, P.; Gouriéroux, C., Duration time-series models with proportional hazard, J. Time Ser. Anal., 29, 74-124 (2008) · Zbl 1164.62045
[13] Genest, C.; Nešlehová, J., A primer on copulas for count data, ASTIN Bull., 37, 475-515 (2007) · Zbl 1274.62398
[14] R. Ibragimov, G. Lentzas, Copulas and long memory, Harvard Institute of Economic Research, Discussion Paper No. 2160, 2009.; R. Ibragimov, G. Lentzas, Copulas and long memory, Harvard Institute of Economic Research, Discussion Paper No. 2160, 2009.
[15] I. Kontoyannis, S.P. Meyn, Geometric ergodicity and spectral gap of non-reversible real valued Markov chains, Probab. Theory Related Fields (2011), in press (doi:10.1007/s00440-011-0373-4; I. Kontoyannis, S.P. Meyn, Geometric ergodicity and spectral gap of non-reversible real valued Markov chains, Probab. Theory Related Fields (2011), in press (doi:10.1007/s00440-011-0373-4
[16] Meyn, S. P.; Tweedie, R. L., Markov Chains and Stochastic Stability (2009), Cambridge University Press: Cambridge University Press London · Zbl 0925.60001
[17] Nelsen, R. B., An Introduction to Copulas (2006), Springer-Verlag: Springer-Verlag New York · Zbl 1152.62030
[18] Roberts, G. O.; Rosenthal, J. S., Geometric ergodicity and hybrid Markov chains, Electron. Comm. Probab., 2, 13-25 (1997) · Zbl 0890.60061
[19] Roberts, G. O.; Tweedie, R. L., Geometric \(L_2\) and \(L_1\) convergence are equivalent for reversible Markov chains, J. Appl. Probab., 38A, 37-41 (2001) · Zbl 1011.60050
[20] Šremr, J., Absolutely continuous functions of two variables in the sense of Carathéodory, Electron. J. Differential Equations, 154, 1-11 (2010) · Zbl 1200.26016
[21] Walczak, S., On the differentiability of absolutely continuous functions of several variables, remarks on the Rademacher theorem, Bull. Pol. Acad. Sci. Math., 36, 513-520 (1988) · Zbl 0762.26010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.