×

Stability in the energy space for chains of solitons of the Landau-Lifshitz equation. (English) Zbl 1301.35173

Summary: We prove the orbital stability of sums of solitons for the one-dimensional Landau-Lifshitz equation with an easy-plane anisotropy, under the assumptions that the (non-zero) speeds of the solitons are different, and that their initial positions are sufficiently separated and ordered according to their speeds.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
35C08 Soliton solutions
35R09 Integro-partial differential equations
35B35 Stability in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Béthuel, F.; Gravejat, P.; Saut, J.-C., Existence and properties of travelling waves for the Gross-Pitaevskii equation, (Farina, A.; Saut, J.-C., Stationary and Time Dependent Gross-Pitaevskii Equations. Stationary and Time Dependent Gross-Pitaevskii Equations, Contemp. Math., vol. 473 (2008), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 55-104
[2] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D., Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J., 57, 6, 2611-2642 (2008) · Zbl 1171.35012
[3] Béthuel, F.; Gravejat, P.; Smets, D., Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation, Ann. Inst. Fourier (Grenoble) (2014), in press · Zbl 1337.35131
[4] Bikbaev, R. F.; Bobenko, A. I.; Its, A. R., Landau-Lifshitz equation, uniaxial anisotropy case: theory of exact solutions, Theoret. and Math. Phys., 178, 2, 143-193 (2014) · Zbl 1303.82038
[5] Bishop, A. R.; Long, K. A., Nonlinear excitations in classical ferromagnetic chains, J. Phys. A, 12, 8, 1325-1339 (1979)
[6] Cazenave, T., Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10 (2003), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1055.35003
[7] Chang, N.-H.; Shatah, J.; Uhlenbeck, K., Schrödinger maps, Comm. Pure Appl. Math., 53, 5, 590-602 (2000) · Zbl 1028.35134
[8] de Laire, A., Minimal energy for the traveling waves of the Landau-Lifshitz equation, SIAM J. Math. Anal., 46, 1, 96-132 (2014) · Zbl 1305.35123
[9] Ding, W.; Wang, Y., Schrödinger flow of maps into symplectic manifolds, Sci. China Ser. A, 41, 7, 746-755 (1998) · Zbl 0918.53017
[10] Dunford, N.; Schwartz, J. T., Linear Operators. Part II. Spectral Theory. Self-adjoint Operators in Hilbert Space, Pure Appl. Math., vol. 7 (1963), Interscience Publishers, John Wiley and Sons: Interscience Publishers, John Wiley and Sons New York, London, Sydney, with the assistance of W.G. Bade and R.G. Bartle · Zbl 0128.34803
[11] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons, Classics Math. (2007), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York, translated by A.G. Reyman · Zbl 1111.37001
[12] Gallo, C., The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, Comm. Partial Differential Equations, 33, 5, 729-771 (2008) · Zbl 1156.35086
[13] Gérard, P.; Zhang, Z., Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl., 91, 2, 178-210 (2009) · Zbl 1232.35152
[14] Grillakis, M.; Shatah, J.; Strauss, W. A., Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74, 1, 160-197 (1987) · Zbl 0656.35122
[15] Guo, B.; Ding, S., Landau-Lifshitz Equations, Front. Res. Chin. Acad. Sci., vol. 1 (2008), World Scientific: World Scientific Hackensack, NJ · Zbl 1158.35096
[16] Gustafson, S.; Shatah, J., The stability of localized solutions of Landau-Lifshitz equations, Comm. Pure Appl. Math., 55, 9, 1136-1159 (2002) · Zbl 1028.35059
[17] Hubert, A.; Schäfer, R., Magnetic Domains: The Analysis of Magnetic Microstructures (1998), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York
[18] Jerrard, R.; Smets, D., On Schrödinger maps from \(T^1\) to \(S^2\), Ann. Sci. Ec. Norm. Super., 45, 4, 635-678 (2012)
[19] Kosevich, A. M.; Ivanov, B. A.; Kovalev, A. S., Magnetic solitons, Phys. Rep., 194, 3-4, 117-238 (1990)
[20] Lakshmanan, M.; Ruijgrok, T. W.; Thompson, C. J., On the dynamics of a continuum spin system, Phys. A, 84, 3, 577-590 (1976)
[21] Landau, L. D.; Lifshitz, E. M., On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sow., 8, 153-169 (1935) · Zbl 0012.28501
[22] Martel, Y.; Merle, F., Stability of two soliton collision for nonintegrable gKdV equations, Comm. Math. Phys., 286, 1, 39-79 (2009) · Zbl 1179.35291
[23] Martel, Y.; Merle, F., Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., 183, 3, 563-648 (2011) · Zbl 1230.35121
[24] Martel, Y.; Merle, F.; Tsai, T.-P., Stability and asymptotic stability in the energy space of the sum of \(N\) solitons for subcritical gKdV equations, Comm. Math. Phys., 231, 2, 347-373 (2002) · Zbl 1017.35098
[25] Martel, Y.; Merle, F.; Tsai, T.-P., Stability in \(H^1\) of the sum of \(K\) solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133, 3, 405-466 (2006) · Zbl 1099.35134
[26] Mikeska, H.-J.; Steiner, M., Solitary excitations in one-dimensional magnets, Adv. Phys., 40, 3, 191-356 (1991)
[28] Nahmod, A.; Shatah, J.; Vega, L.; Zeng, C., Schrödinger maps and their associated frame systems, Int. Math. Res. Not. IMRN, 2007, 1-29 (2007) · Zbl 1142.35087
[29] Schoen, R.; Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom., 18, 253-268 (1983) · Zbl 0547.58020
[30] Sulem, P. L.; Sulem, C.; Bardos, C., On the continuous limit for a system of classical spins, Comm. Math. Phys., 107, 3, 431-454 (1986) · Zbl 0614.35087
[31] Tjon, J.; Wright, J., Solitons in the continuous Heisenberg spin chain, Phys. Rev. B, 15, 7, 3470-3476 (1977)
[32] Zhou, Y. L.; Guo, B. L., Existence of weak solution for boundary problems of systems of ferro-magnetic chain, Sci. China Ser. A, 27, 8, 799-811 (1984) · Zbl 0571.35058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.