×

A functional limit theorem for dependent sequences with infinite variance stable limits. (English) Zbl 1295.60041

Authors’ abstract: Under an appropriate regular variation condition, the affinely normalized partial sums of a sequence of independent and identically distributed random variables converges weakly to a non-Gaussian stable random variable. A functional version of this is known to be true as well, the limit process being a stable Lévy process. The main result in the paper is that for a stationary, regularly varying sequence for which clusters of high-threshold excesses can be broken down into asymptotically independent blocks, the properly centered partial sum process still converges to a stable Lévy process. Due to clustering, the Lévy triple of the limit process can be different from the one in the independent case. The convergence takes place in the space of càdlàg functions endowed with Skorohod’s \(M_{1}\) topology, the more usual \(J_{1}\) topology being inappropriate as the partial sum processes may exhibit rapid successions of jumps within temporal clusters of large values, collapsing in the limit to a single jump. The result rests on a new limit theorem for point processes which is of independent interest. The theory is applied to moving average processes, squared \(\text{GARCH}(1,1)\) processes and stochastic volatility models.

MSC:

60F17 Functional limit theorems; invariance principles
60G52 Stable stochastic processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60G70 Extreme value theory; extremal stochastic processes
60E05 Probability distributions: general theory
60E07 Infinitely divisible distributions; stable distributions
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Aue, A., Berkes, I. and Horváth, L. (2008). Selection from a stable box. Bernoulli 14 125-139. · Zbl 1157.60310 · doi:10.3150/07-BEJ6014
[2] Avram, F. and Taqqu, M. S. (1992). Weak convergence of sums of moving averages in the \(\alpha\)-stable domain of attraction. Ann. Probab. 20 483-503. · Zbl 0747.60032 · doi:10.1214/aop/1176989938
[3] Bartkiewicz, K., Jakubowski, A., Mikosch, T. and Wintenberger, O. (2011). Stable limits for sums of dependent infinite variance random variables. Probab. Theory Related Fields 150 337-372. · Zbl 1231.60017 · doi:10.1007/s00440-010-0276-9
[4] Basrak, B., Davis, R. A. and Mikosch, T. (2002). Regular variation of GARCH processes. Stochastic Process. Appl. 99 95-115. · Zbl 1060.60033 · doi:10.1016/S0304-4149(01)00156-9
[5] Basrak, B. and Segers, J. (2009). Regularly varying multivariate time series. Stochastic Process. Appl. 119 1055-1080. · Zbl 1161.60319 · doi:10.1016/j.spa.2008.05.004
[6] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Math. 121 . Cambridge Univ. Press, Cambridge. · Zbl 0861.60003
[7] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201
[8] Brockwell, P. J. and Davis, R. A. (1991). Time Series : Theory and Methods , 2nd ed. Springer, New York. · Zbl 0709.62080
[9] Dabrowski, A. R. and Jakubowski, A. (1994). Stable limits for associated random variables. Ann. Probab. 22 1-16. · Zbl 0793.60018 · doi:10.1214/aop/1176988845
[10] Davis, R. and Resnick, S. (1985). Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13 179-195. · Zbl 0562.60026 · doi:10.1214/aop/1176993074
[11] Davis, R. A. (1983). Stable limits for partial sums of dependent random variables. Ann. Probab. 11 262-269. · Zbl 0511.60021 · doi:10.1214/aop/1176993595
[12] Davis, R. A. and Hsing, T. (1995). Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab. 23 879-917. · Zbl 0837.60017 · doi:10.1214/aop/1176988294
[13] Davis, R. A. and Mikosch, T. (1998). The sample autocorrelations of heavy-tailed processes with applications to ARCH. Ann. Statist. 26 2049-2080. · Zbl 0929.62092 · doi:10.1214/aos/1024691368
[14] Davis, R. A. and Mikosch, T. (2009). The extremogram: A correlogram for extreme events. Bernoulli 15 977-1009. · Zbl 1200.62104 · doi:10.3150/09-BEJ213
[15] Davis, R. A. and Mikosch, T. (2009). Probabilistic properties of stochastic volatility models. In Handbook of Financial Time Series (T. G. Anderson, R. A. Davis, J. P. Kreiss and T. Mikosch, eds.) 255-268. Springer. · Zbl 1200.62129
[16] Denker, M. and Jakubowski, A. (1989). Stable limit distributions for strongly mixing sequences. Statist. Probab. Lett. 8 477-483. · Zbl 0694.60017 · doi:10.1016/0167-7152(89)90030-8
[17] Durrett, R. and Resnick, S. I. (1978). Functional limit theorems for dependent variables. Ann. Probab. 6 829-846. · Zbl 0398.60024 · doi:10.1214/aop/1176995431
[18] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events : For Insurance and Finance. Applications of Mathematics ( New York ) 33 . Springer, Berlin. · Zbl 0873.62116
[19] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II , 2nd ed. Wiley, New York. · Zbl 0219.60003
[20] Gnedenko, B. V. and Kolmogorov, A. N. (1954). Limit Distributions for Sums of Independent Random Variables . Addison-Wesley, Cambridge, MA. · Zbl 0056.36001
[21] Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126-166. · Zbl 0724.60076 · doi:10.1214/aoap/1177005985
[22] Gouëzel, S. (2004). Central limit theorem and stable laws for intermittent maps. Probab. Theory Related Fields 128 82-122. · Zbl 1038.37007 · doi:10.1007/s00440-003-0300-4
[23] Herrndorf, N. (1985). A functional central limit theorem for strongly mixing sequences of random variables. Z. Wahrsch. Verw. Gebiete 69 541-550. · Zbl 0558.60032 · doi:10.1007/BF00532665
[24] Jakubowski, A. (1993). Minimal conditions in \(p\)-stable limit theorems. Stochastic Process. Appl. 44 291-327. · Zbl 0771.60015 · doi:10.1016/0304-4149(93)90029-4
[25] Jakubowski, A. (1997). Minimal conditions in \(p\)-stable limit theorems. II. Stochastic Process. Appl. 68 1-20. · Zbl 0890.60024 · doi:10.1016/S0304-4149(97)00014-8
[26] Jakubowski, A. and Kobus, M. (1989). \(\alpha\)-stable limit theorems for sums of dependent random vectors. J. Multivariate Anal. 29 219-251. · Zbl 0687.60025 · doi:10.1016/0047-259X(89)90025-0
[27] Kallenberg, O. (1983). Random Measures , 3rd ed. Akademie-Verlag, Berlin. · Zbl 0544.60053
[28] Kallenberg, O. (1997). Foundations of Modern Probability . Springer, New York. · Zbl 0892.60001
[29] Kolmogorov, A. N. and Rozanov, Y. A. (1960). On strong mixing conditions for stationary Gaussian process. Theory Probab. Appl. 5 204-208. · Zbl 0106.12005 · doi:10.1137/1105018
[30] Krizmanić, D. (2010). Functional limit theorems for weakly dependent regularly varying time series. Ph.D. thesis, Univ. Zagreb. Available at .
[31] Leadbetter, M. R. and Rootzén, H. (1988). Extremal theory for stochastic processes. Ann. Probab. 16 431-478. · Zbl 0648.60039 · doi:10.1214/aop/1176991767
[32] LePage, R., Woodroofe, M. and Zinn, J. (1981). Convergence to a stable distribution via order statistics. Ann. Probab. 9 624-632. · Zbl 0465.60031 · doi:10.1214/aop/1176994367
[33] Meinguet, T. and Segers, J. (2010). Regularly varying time series in Banach space. Université catholique de Louvain, Institut de statistique DP1002. Available at .
[34] Merlevède, F. and Peligrad, M. (2000). The functional central limit theorem under the strong mixing condition. Ann. Probab. 28 1336-1352. · Zbl 1023.60040 · doi:10.1214/aop/1019160337
[35] Mikosch, T. and Stărică, C. (2000). Limit theory for the sample autocorrelations and extremes of a GARCH \((1,1)\) process. Ann. Statist. 28 1427-1451. · Zbl 1105.62374 · doi:10.1214/aos/1015957401
[36] Mori, T. (1977). Limit distributions of two-dimensional point processes generated by strong-mixing sequences. Yokohama Math. J. 25 155-168. · Zbl 0374.60010
[37] Peligrad, M. and Utev, S. (2005). A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33 798-815. · Zbl 1070.60025 · doi:10.1214/009117904000001035
[38] Petrov, V. V. (1995). Limit Theorems of Probability Theory : Sequences of Independent Random Variables. Oxford Studies in Probability 4 . Clarendon, Oxford Univ. Press, New York. · Zbl 0826.60001
[39] Pham, T. D. and Tran, L. T. (1985). Some mixing properties of time series models. Stochastic Process. Appl. 19 297-303. · Zbl 0564.62068 · doi:10.1016/0304-4149(85)90031-6
[40] Resnick, S. I. (1986). Point processes, regular variation and weak convergence. Adv. in Appl. Probab. 18 66-138. · Zbl 0597.60048 · doi:10.2307/1427239
[41] Resnick, S. I. (2007). Heavy-Tail Phenomena : Probabilistic and Statistical Modeling . Springer, New York. · Zbl 1152.62029 · doi:10.1007/978-0-387-45024-7
[42] Sato, K.-i. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Stud. Adv. Math. 68 . Cambridge Univ. Press, Cambridge. · Zbl 0973.60001
[43] Segers, J. (2003). Functionals of clusters of extremes. Adv. in Appl. Probab. 35 1028-1045. · Zbl 1043.60043 · doi:10.1239/aap/1067436333
[44] Segers, J. (2005). Approximate distributions of clusters of extremes. Statist. Probab. Lett. 74 330-336. · Zbl 1095.62063 · doi:10.1016/j.spl.2005.04.054
[45] Skorohod, A. V. (1957). Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2 145-177. · Zbl 0097.13001
[46] Sly, A. and Heyde, C. (2008). Nonstandard limit theorem for infinite variance functionals. Ann. Probab. 36 796-805. · Zbl 1144.60030 · doi:10.1214/07-AOP345
[47] Smith, R. L. (1992). The extremal index for a Markov chain. J. Appl. Probab. 29 37-45. · Zbl 0759.60059 · doi:10.2307/3214789
[48] Tyran-Kamińska, M. (2010). Convergence to Lévy stable processes under some weak dependence conditions. Stochastic Process. Appl. 120 1629-1650. · Zbl 1198.60018 · doi:10.1016/j.spa.2010.05.010
[49] Tyran-Kamińska, M. (2010). Functional limit theorems for linear processes in the domain of attraction of stable laws. Statist. Probab. Lett. 80 975-981. · Zbl 1193.60030 · doi:10.1016/j.spl.2010.02.011
[50] Whitt, W. (2002). Stochastic-Process Limits : An Introduction to Stochastic-Process Limits and Their Application to Queues . Springer, New York. · Zbl 0993.60001 · doi:10.1007/b97479
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.