×

Minimax theorems for scalar set-valued mappings with nonconvex domains and applications. (English) Zbl 1281.49023

Let \(X_{0}\) and \(Y_{0}\) be two nonempty compact subsets of the real Hausdorff topological vector spaces \(X\) and \(Y\), respectively, and \(F:X\times Y\rightarrow2^{\mathbb{R}}\) be a set-valued mapping. The main result of the paper is that, under suitable conditions, the following minimax equality holds: \[ \min {\bigcup \limits_{y\in Y_{0}}}\max F(X_{0},y)=\max {\bigcup \limits_{x\in X_{0}}}\min F(x,Y_{0}). \]
Using the above result and an argument involving the Ky Fan Lemma for KKM maps, the existence of a solution for a generalized vector valued equilibrium problem with set-valued maps is deduced. Other results obtained are a scalar and a vector version of a Ky Fan minimax inequality.

MSC:

49K35 Optimality conditions for minimax problems
49J53 Set-valued and variational analysis
90C47 Minimax problems in mathematical programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li G.Y.: A note on nonconvex minimax theorem with separable homogeneous polynomials. J. Optim. Theory Appl. 150, 194-203 (2011) · Zbl 1229.49008 · doi:10.1007/s10957-011-9827-1
[2] Park S.: The Fan minimax inequality implies the Nash equilibrium theorem. Appl. Math. Lett. 24, 2206-2210 (2011) · Zbl 1236.49014 · doi:10.1016/j.aml.2011.06.027
[3] Jeyakumar V., Li G.Y., Lee G.M.: A robust von Neumann minimax theorem for zero-sum games under bounded payoff uncertainty. Oper. Res. Lett. 39, 109-114 (2011) · Zbl 1218.91006 · doi:10.1016/j.orl.2011.02.007
[4] Borwein J.M., Zhuang D.: On Fan’s minimax theorem. Math. Programm 34, 232-234 (1986) · Zbl 0589.49005 · doi:10.1007/BF01580587
[5] Jeyakumar V.: A generalization of a minimax theorem of Fan via a theorem of the alternative. J. Optim. Theory Appl. 48, 525-533 (1986) · Zbl 0563.49006 · doi:10.1007/BF00940575
[6] Kim W.K., Kum S.: On a noncompact generalization of Fan’s minimax theorem. Taiwan. J. Math. 14, 347-358 (2010) · Zbl 1204.26020
[7] Fan, K.: A minimax inequality and applications. In: Sisha, O. (ed.) Inequalities, vol. 3, pp. 103-113. Academic, New York (1972)
[8] Cho Y.J., Chang S.S., Jung J.S., Kang S.M., Wu X.: Minimax theorems in probabilistic metric spaces. Bull. Austral. Math. Soc. 51, 103-119 (1995) · Zbl 0833.49007 · doi:10.1017/S0004972700013939
[9] Cho Y.J., Delavar M.R., Mohammadzadeh S.A., Roohi M.: Coincidence theorems and minimax inequalities in abstract convex spaces, J. Inequal. Appl. 2011, 126 (2011) · Zbl 1279.26026 · doi:10.1186/1029-242X-2011-126
[10] Nieuwenhuis J.W.: Some minimax theorems in vector-valued functions. J. Optim. Theory Appl. 40, 463-475 (1983) · Zbl 0494.90073 · doi:10.1007/BF00933511
[11] Tanaka T.: Some minimax problems of vector-valued functions. J. Optim. Theory Appl. 59, 505-524 (1988) · Zbl 0628.90078 · doi:10.1007/BF00940312
[12] Shi D.S., Ling C.: Minimax theorems and cone saddle points of uniformly same-order vector-valued functions. J. Optim. Theory Appl. 84, 575-587 (1995) · Zbl 0823.47062 · doi:10.1007/BF02191986
[13] Ferro F.: A minimax theorem for vector-valued functions. J. Optim. Theory Appl. 60, 19-31 (1989) · Zbl 0631.90077 · doi:10.1007/BF00938796
[14] Ferro F.: A minimax theorem for vector-valued functions, Part 2. J. Optim. Theory Appl. 68, 35-48 (1991) · Zbl 0696.90061 · doi:10.1007/BF00939934
[15] Chen G.Y.: A generalized section theorem and a minimax inequality for a vector-valued mapping. Optimization 22, 745-754 (1991) · Zbl 0761.47036 · doi:10.1080/02331939108843716
[16] Chang S.S., Lee G.M., Lee B.S.: Minimax inequalities for vector-valued mappings on W-spaces. J. Math. Anal. Appl. 198, 371-380 (1996) · Zbl 0862.47047 · doi:10.1006/jmaa.1996.0088
[17] Li Z.F., Wang S.Y.: A type of minimax inequality for vector-valued mappings. J. Math. Anal. Appl. 227, 68-80 (1998) · Zbl 0913.90275 · doi:10.1006/jmaa.1998.6076
[18] Luo, X. Q.: On some generalized Ky Fan minimax inequalities. Fixed Point Theory Appl. Article ID 194671 (2009) · Zbl 0823.47062
[19] Yang M.G., Xu J.P., Huang N.J., Yu S.J.: Minimax theorems for vector-valued mappings in abstract convex spaces. Taiwanese J.Math. 14(2), 719-732 (2010) · Zbl 1197.49004
[20] Gong X.H.: The strong minimax theorem and strong saddle points of vector-valued functions. Nonlinear Anal. 68, 2228-2241 (2008) · Zbl 1213.49007 · doi:10.1016/j.na.2007.01.056
[21] Li X.B., Li S.J., Fang Z.M.: A minimax theorem for vector valued functions in lexicographic order. Nonlinear Anal. 73, 1101-1108 (2010) · Zbl 1204.49021 · doi:10.1016/j.na.2010.04.047
[22] Gong X.H.: Strong vector equilibrium problems. J. Glob. Optim. 36, 339-349 (2006) · Zbl 1120.90055 · doi:10.1007/s10898-006-9012-5
[23] Bigi G., Capaǎtǎ A., Kássay G.: Existence results for strong vector equilibrium problems and their applications. Optimization 1, 1-17 (2010)
[24] Zhong, R.Y., Huang, N.J., Cho, Y.J.: Boundedness and nonemptiness of solution sets for set-valued vector equilibrium problems with an application. J. Inequal. Appl. Article ID 936428 (2011) · Zbl 1230.49012
[25] Chen B., Huang N.J., Cho Y.J.: Symmetric strong vector quasi-equilibrium problems in Hausdorff locally convex spaces. J. Inequal. Appl 2011, 56 (2011) · Zbl 1269.49007 · doi:10.1186/1029-242X-2011-56
[26] Li S.J., Chen G.Y., Lee G.M.: Minimax theorems for set-valued mappings. J. Optim. Theory Appl. 106, 183-200 (2000) · Zbl 1054.90086 · doi:10.1023/A:1004667309814
[27] Li S.J., Chen G.Y., Teo K.L., Yang X.Q.: Generalized minimax inequalities for set-valued mappings. J. Math. Anal. Appl. 281, 707-723 (2003) · Zbl 1031.49009 · doi:10.1016/S0022-247X(03)00197-5
[28] Zhang, Y., Li, S.J.: Generalized Ky Fan minimax inequalities for set-valued mappings. (submitted) · Zbl 1301.49018
[29] Zhang Y., Li S.J.: Ky Fan minimax inequalities for set-valued mappings. Fixed Point Theory Appl. 2012, 64 (2012) · Zbl 1273.49012 · doi:10.1186/1687-1812-2012-64
[30] Zhang Y., Li S.J., Zhu S.K.: Mininax problems for set-valued mappings. Numer. Funct. Anal. Optim. 33(2), 239-253 (2012) · Zbl 1237.49010 · doi:10.1080/01630563.2011.610915
[31] Jahn J.: Vector optimization: theory, applications, and extensions. Springer, Berlin (2004) · Zbl 1055.90065 · doi:10.1007/978-3-540-24828-6
[32] Aubin J.P., Ekeland I.: Applied nonlinear analysis. Wiley, New York (1984) · Zbl 0641.47066
[33] Luc D.T., Vargas C.: A saddle point theorem for set-valued maps. Nonlinear Anal. 18, 1-7 (1992) · Zbl 0797.90120 · doi:10.1016/0362-546X(92)90044-F
[34] Tan K.K., Yu J., Yuan X.Z.: Existence theorems for saddle points of vector-valued maps. J. Optim. Theory Appl. 89, 731-747 (1996) · Zbl 0849.49009 · doi:10.1007/BF02275357
[35] Lin, Y.C., Chen, H.J.: Solving the set equilibrium problems. Fixed Point Theory Appl. Article ID 945413 (2011) · Zbl 0823.47062
[36] Gerstewitz, C.: Nichtkonvexe trennungssätze und deren anwendung in der theorie der vektoroptimierung. Seminarberichte der Secktion Mathematik der Humboldt-Universität zu Berlin 80, 19-31 (1986) · Zbl 0609.49005
[37] Chen G.Y., Huang X.X., Yang X.Q.: Vector optimization, set-valued and variational analysis. Springer, Berlin (2005) · Zbl 1104.90044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.