×

Charged fluid to anisotropic fluid distribution in general relativity. (English) Zbl 1276.85010

Summary: A new class of well behaved anisotropic super-dense stars has been derived with the help of a given class of charged fluid distributions. The anisotropy parameter (or the electric intensity) is zero at the centre and monotonically increasing towards the pressure free interface. All the physical parameter such as energy density, radial pressure, tangential pressure and velocity of sound are monotonically decreasing towards the surface. The maximum mass measures 3.8593 solar mass and the corresponding radius is 21.2573 km for \(n=1\) i.e. \(N\) tends to infinity.

MSC:

85A15 Galactic and stellar structure
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bayin, S.S.: Anisotropic fluid spheres in general relativity. Phys. Rev. D 26, 1262 (1982) · doi:10.1103/PhysRevD.26.1262
[2] Binney, J., Tremaine, J.S.: Galactic Dynamics. Princeton University Press, Princeton (1987) · Zbl 1130.85301
[3] Bowers, R.L., Liang, E.P.T.: Anisotropic spheres in general relativity. Astrophys. J. 188, 657 (1974) · doi:10.1086/152760
[4] Durgapal, M.C., et al.: Physically realizable relativistic stellar structures. Astrophys. Space Sci. 102, 49 (1984) · doi:10.1007/BF00651061
[5] Gokhroo, M.K., Mehra, A.L.: Anisotropic spheres with variable energy density in general relativity. Gen. Relativ. Gravit. 26, 75 (1994) · Zbl 1186.83042 · doi:10.1007/BF02088210
[6] Heintzmann, H., Hillebrandt, W.: Neutron stars with an anisotropic equation of state: mass, redshift and stability. Astron. Astrophys. 38, 51 (1975)
[7] Herrera, L., Ponce de Leon, J.: Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions. J. Math. Phys. 26, 2302 (1985) · Zbl 0584.76127 · doi:10.1063/1.526813
[8] Herrera, L., Santos, N.O.: Local anisotropy in self-gravitating systems. Phys. Rep. 286, 53 (1997) · doi:10.1016/S0370-1573(96)00042-7
[9] Kippenhahm, R., Weigert, A.: Stellar Structure and Evolution. Springer, Berlin (1990) · Zbl 1254.85001
[10] Letelier, P.: Anisotropic fluids with two-perfect-fluid components. Phys. Rev. D 22, 807 (1980) · doi:10.1103/PhysRevD.22.807
[11] Maurya, S.K., Gupta, Y.K.: A family of anisotropic super-dense star models using a space-time describing charged perfect fluid distributions. Phys. Scr. 86, 025009 (2012a) (9 pp.) · Zbl 1272.83037 · doi:10.1088/0031-8949/86/02/025009
[12] Maurya, S.K., Gupta, Y.K.: A new family of polynomial solutions for charged fluid spheres. Nonlinear Anal., Real World Appl. 13, 677–685 (2012b) · Zbl 1238.35158 · doi:10.1016/j.nonrwa.2011.08.008
[13] Sokolov, A.I.: Phase transitions in a superfluid neutron fluid. J. Exp. Theor. Phys. 79, 1137 (1980)
[14] Tupper, B.O.J.: The equivalence of electromagnetic fields and viscous fluids in general relativity. J. Math. Phys. 22, 2666 (1981) · Zbl 0495.76117 · doi:10.1063/1.524845
[15] Tupper, B.O.J.: The equivalence of perfect fluid space-time and magnetohydrodynamic space-time in general relativity. Gen. Relativ. Gravit. 15, 47 (1983a) · Zbl 0515.76129 · doi:10.1007/BF00755894
[16] Tupper, B.O.J.: The equivalence of perfect fluid space-time and viscous magnetohydrodynamic space-time in general relativity. Gen. Relativ. Gravit. 15, 849 (1983b) · Zbl 0547.76138 · doi:10.1007/BF00778797
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.