×

Fundamental group of \(n\)-sphere for \(n \geq 2\). (English) Zbl 1276.57004

Summary: Triviality of fundamental groups of spheres of dimension greater than 1 is proven.

MSC:

57M05 Fundamental group, presentations, free differential calculus
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. · Zbl 1364.68157
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[11] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
[12] Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. FormalizedMathematics, 12(3):251-260, 2004.
[13] Artur Korniłowicz. The fundamental group of convex subspaces of En T. Formalized Mathematics, 12(3):295-299, 2004.
[14] Artur Korniłowicz. On the isomorphism of fundamental groups. Formalized Mathematics, 12(3):391-396, 2004.
[15] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En T. Formalized Mathematics, 12(3):301-306, 2004.
[16] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261-268, 2004.
[17] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000. · Zbl 0956.57001 · doi:10.1007/b98853
[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[21] Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4. · Zbl 1276.57023 · doi:10.2478/v10037-011-0007-4
[22] Marco Riccardi. Planes and spheres as topological manifolds. Stereographic projection. Formalized Mathematics, 20(1):41-45, 2012, doi: 10.2478/v10037-012-0006-0. · Zbl 1276.57022 · doi:10.2478/v10037-012-0006-0
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.