×

On the fractal geometry of DNA by the binary image analysis. (English) Zbl 1272.92013

Summary: The multifractal analysis of binary images of DNA is studied in order to define a methodological approach to the classification of DNA sequences. This method is based on the computation of some multifractality parameters on a suitable binary image of DNA, which takes into account the nucleotide distribution. The binary image of DNA is obtained by a dot-plot (recurrence plot) of the indicator matrix. The fractal geometry of these images is characterized by fractal dimension (FD), lacunarity, and succolarity. These parameters are compared with some other coefficients such as complexity and Shannon information entropy. It will be shown that the complexity parameters are more or less equivalent to FD, while the parameters of multifractality have different values in the sense that sequences with higher FD might have lower lacunarity and/or succolarity. In particular, the genome of Drosophila melanogaster has been considered by focusing on the chromosome 3r, which shows the highest fractality with a corresponding higher level of complexity. We will single out some results on the nucleotide distribution in 3r with respect to complexity and fractality. In particular, we will show that sequences with higher FD also have a higher frequency distribution of guanine, while low FD is characterized by the higher presence of adenine.

MSC:

92C40 Biochemistry, molecular biology
92C55 Biomedical imaging and signal processing
94A17 Measures of information, entropy
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185–2195.
[2] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walters, P. (2002). Molecular biology of the cell. New York: Garland Science.
[3] Allain, C., & Cloitre, M. (1991). Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A, 44(6), 3552–3558.
[4] Anh, V., Zhi-Min, G., & Shun-Chao, L. (2002). Fractals in DNA sequence analysis. Chin. Phys., 11(12), 1313–1318.
[5] Ashburner, M., Golic, K., & Hawley, S. H. (2005). Drosophila: a laboratory handbook. New York: Cold Spring Harbor Laboratory Press.
[6] Backes, A. R., & Bruno, O. M. (2006). Segmentação de texturas por análise de complexidade. J. Comput. Sci., 5(1), 87–95.
[7] Baish, J. W., & Jain, R. K. (2000). Fractals and cancer. Cancer Res., 60, 3683–3688.
[8] Bassinghtwaighte, J. B., Leibovitch, L. S., & West, B. J. (1994). American physiological society methods in physiology series. Fractal physiology. New York: Oxford University Press.
[9] Bedin, V., Adam, R. L., de Sa, B. C., Landman, G., & Metze, K. (2010). Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma. BMC Cancer, 260(10), 1–6.
[10] Berger, J. A., Mitra, S. K., Carli, M., & Neri, A. (2004). Visualization and analysis of DNA sequences using DNA walks. J. Franklin Inst., 341(1–2), 37–53. · Zbl 1094.92025
[11] Biémont, V., & Vieira, C. (2006). Genetics: junk DNA as an evolutionary force. Nature, 443, 521–524.
[12] Borys, P., Krasowska, M., Grzywna, Z. J., Djamgoz, M. B. A., & Mycielska, M. E. (2008). Lacunarity as a novel measure of cancer cells behavior. Biosystems, 94(3), 276–281.
[13] Buldyrev, S. V., Dokholyan, N. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Stanley, H. E., & Viswanathan, G. M. (1998). Analysis of DNA sequences using methods of statistical physics. Physica A, 249, 430–438.
[14] Cattani, C. (2010a). Fractals and hidden symmetries in DNA. Math. Probl. Eng., 2010, 507056. · Zbl 1189.92015
[15] Cattani, C. (2010b). Wavelet algorithms for DNA analysis. In M. Elloumi & A. Y. Zomaya (Eds.), Wiley series in bioinformatics. Algorithms in computational molecular biology: techniques, approaches and applications (pp. 799–842). New York: Wiley.
[16] Cattani, C. (2012a). On the existence of wavelet symmetries in archaea DNA. Comput. Math. Methods Med., 2012, 673934. · Zbl 1234.92014
[17] Cattani, C. (2012b). Complexity and symmetries in DNA sequences. In M. Elloumi & A. Y. Zomaya (Eds.), Wiley series in bioinformatics. Handbook of biological discovery (pp. 700–742). New York: Wiley.
[18] Cattani, C., & Pierro, G. (2011). Complexity on acute myeloid leukemia mRNA transcript variant. Math. Probl. Eng., 2011, 379873. · Zbl 1235.92025
[19] Cattani, C., Pierro, G., & Altieri, G. (2012). Entropy and multifractality for the myeloma multiple TET 2 gene. Math. Probl. Eng., 2012, 193761. · Zbl 1264.92017
[20] Chatzidimitriou-Dreismann, C. A., & Larhammar, D. (1993). Long-range correlations in DNA. Nature, 361, 212–213.
[21] Chen, H. D., Chang, C. H., Hsieh, L. C., & Lee, H. C. (2005). Divergence and Shannon information in genomes. Phys. Rev. Lett., 94(17), 1–4.
[22] Codling, E. A., Plank, M. J., & Benhamou, S. (2008). Random walk models in biology. J. R. Soc., 5, 813–834.
[23] Cross, S. S. (1997). Fractals in pathology. J. Pathol., 182(1), 1–8.
[24] Crummiler, M., Knight, B., Yu, Y., & Kaplan, E. (2011). Estimating the amount of information conveyed by a population of neurons. Front. Neurosci., 5(90), 1–11.
[25] D’Anselmi, F., Valerio, M., Cucina, A., Galli, L., Proietti, S., Dinicola, S., Pasqualato, A., Manetti, C., Ricci, G., Giuliani, A., & Bizzarri, M. (2011). Metabolism and cell shape in cancer: a fractal analysis. Int. J. Biochem. Cell Biol., 43(7), 1052–1058.
[26] de Melo, R. H. C. (2007). Using fractal characteristics such as fractal dimension, lacunarity and succolarity to characterize texture patterns on images (pp. 1–85).
[27] de Melo, R. H. C., & Conci, A. (2008). Succolarity: defining a method to calculate this fractal measure. Syst. Signals Image Process., 291–294.
[28] de Melo, R. H. C., & Conci, A. (2011). How Succolarity could be used as another fractal measure in image analysis. Telecommun. Syst., 1–13.
[29] Dey, P., & Banik, T. (2012). Fractal dimension of chromatin texture of squamous intraepithelial lesions of cervix. Diagn. Cytopathol., 40(2), 152–154.
[30] Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhys. Lett., 5(9), 973–977.
[31] Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiol. Meas., 23(1), 1–38.
[32] Faure, P., & Lesne, A. (2010). Recurrence plots for symbolic sequences. Int. J. Bifurc. Chaos, 20(6), 1731–1749.
[33] Ferro, D. P., Falconi, M. A., Adam, R. L., Ortega, M. M., Lima, C. P., de Souza, C. A., Lorand-Metze, I., & Metze, K. (2011). Fractal characteristics of May-Grünwald-Giemsa stained chromatin are independent prognostic factors for survival in multiple myeloma. PLoS ONE, 6(6), 1–8.
[34] Fudenberg, G., & Mirny, L. A. (2012). Higher-order chromatin structure: bridging physics and biology. Curr. Opin. Genet. Dev., 22(2), 115–124.
[35] Fukushima, A., Kinouchi, M., Kanaya, S., Kudo, Y., & Ikemura, T. (2000). Statistical analysis of genomic information: long-range correlation in DNA sequences. Genome Inform., 11, 315–316.
[36] Galván, B., Román-Roldán, R., & Oliver, J. L. (1996). Compositional segmentation and long-range fractal correlations in DNA sequences. Phys. Rev. E, 53(5), 5181–5189.
[37] German, J. L. (1962). DNA synthesis in human chromosomes. Trans. N. Y. Acad. Sci., 24(4), 395–407.
[38] Gibbs, A. J., & McIntyre, G. A. (1970). The diagram, a method for comparing sequences. Its use with amino acid and nucleotide sequences. Eur. J. Biochem., 16(1), 1–11.
[39] Gilmore, S., Hofmann-Wellenhof, R., Muir, J., & Soyer, H. P. (2009). Lacunarity analysis: a promising method for the automated assessment of melanocytic naevi and melanoma. PLoS ONE, 4(10), 1–10.
[40] Hao, B., Lee, H. C., & Zhang, S. (2000). Fractals related to long DNA sequences and complete genomes. Chaos Solitons Fractals, 11(6), 825–836. · Zbl 0959.92019
[41] Hassan, S. K. S., Pal Choudhury, P., Daya Sagar, B. S., Chakraborty, S., Guha, R., & Goswami, A. (2011). Understanding genomic evolution of olfactory receptors through fractal and mathematical morphology. Nat. Proc., 1–4.
[42] Havlin, S., Buldyrev, S. V., Goldberger, A. L., Mantegna, R. N., Ossadnik, S. M., Peng, C.-K., Simons, M., & Stanley, H. E. (1995). Fractals in biology and medicine. Chaos Solitons Fractals, 6, 171–201. · Zbl 0898.92001
[43] Herzel, H., Ebeling, W., & Schmitt, A. O. (1994). Entropies of biosequences: the role of repeats. Phys. Rev. E, 50(6), 5061–5071.
[44] Hoskins, R. A., Smith, C. D., Carlson, J. W., Carvalho, A. B., Halpern, A., Kaminker, J. S., Kennedy, C., Mungall, C. J., Sullivan, B. A., Sutton, G. G., Yasuhara, J. C., Wakimoto, B. T., Myers, E. W., Celniker, S. E., Rubin, G. M., & Karpen, G. H. (2002). Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biology 3(12), Research0085.
[45] Jeffrey, H. J. (1990). Chaos game representation of gene structure. Nucleic Acids Res., 18(8), 2163–2170.
[46] Keller, A. (2007). Drosophila melanogaster’s story as a human commensal. Curr. Biol., 17, 77–81.
[47] Kirillova, O. V. (2000). Entropy concepts and DNA investigation. Phys. Lett. A, 274(5–6), 247–253. · Zbl 1064.92511
[48] Li, W., & Kaneko, K. (1992). DNA correlations. Nature, 360, 635–636.
[49] Lopes, R., & Betrouni, N. (2009). Fractal and multifractal analysis: a review. Med. Image Anal., 13, 634–649.
[50] Luo & Liao-Fu (2008). Entropy production in a cell and reversal of entropy flow as an anticancer therapy. Front. Phys. China, 4(1), 122–136.
[51] Mandelbrot, B. (1982). The fractal geometry of nature. New York: Freeman. · Zbl 0504.28001
[52] Marwan, N., & Kurths, J. (2002). Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A, 30(5–6), 299–307. · Zbl 0998.62518
[53] Marwan, N., Roomano, M. C., Thiel, M., & Kurths, J. (2007). Recurrrence plots for the analysis of complex systems. Phys. Rep., 438(5–6), 237–329.
[54] Metze, K., Adam, R. L., & Ferreira, R. C. (2010a). Robust variables in texture analysis. Pathology, 42(6), 609–610.
[55] Metze, K., Adam, R. L., Kayser, G., & Kayser, K. (2010b). Pathophysiology of cancer and the entropy concept, model-based reasoning in science and technology. Stud. Comput. Intell., 314, 199–206.
[56] Ming, L. (2010). Fractal time series–a tutorial review. Math. Probl. Eng., 2010, 157264. · Zbl 1205.93011
[57] Ming, L., & Wei, Z. (2012). Quantitatively investigating locally weak stationarity of modified multifractional Gaussian noise. Physica A, 391(24), 6268–6278.
[58] Mitchell, D., & Bridge, R. (2006). A test of Chargaff’s second rule. Biochem. Biophys. Res. Commun., 340(1), 90–94.
[59] Nazib, A., Amimul Ahsan, A. H. M., & Rahman, D. M. (2012). Evaluation of information theory in analyzing DNA sequences. Int. J. Comput. Inf. Technol., 02(02), 44–46.
[60] Ohno, S. (1972). So much ”junk” DNA in our genome. In H. H. Smith (Ed.), Brookhaven SympBiol: Vol. 23. Evolution of genetic systems (pp. 366–370). New York: Gorden & Breach.
[61] Pantic, I., Harhaji-Trajkovic, L., Pantovic, A., Milosevic, N. T., & Trajkovic, V. (2012). Changes in fractal dimension and lacunarity as early markers of UV-induced apoptosis. J. Theor. Biol., 303(21), 87–92. · Zbl 06587106
[62] Pellionisz, A. J., Graham, R., Pellionisz, P. A., & Perez, J. C. (2011). Recursive genome function of the cerebellum: geometric unification of neuroscience and genomics. In M. Manto (Ed.), Handbook: the cerebellum and cerebellar disorders (pp. 1–23). Berlin: Springer.
[63] Pierro, G. (2012). Sequence complexity of chromosome 3 in Caenorhabditis elegans. Adv. Bioinform., 2012, 287486.
[64] Plotnick, R. E., Gardner, R. H., & O’Neill, R. V. (1993). Lacunarity indices as measures of landscape texture. Landsc. Ecol., 8(3), 201–211.
[65] Plotnick, R. E., Gardner, R. H., Hargrove, W. W., Prestegaard, K., & Perlmutter, M. (1996). Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys. Rev. E, 53(5), 5461–5468.
[66] Schmitt, A. O., & Herzel, H. (1997). Estimating the entropy of DNA sequences. J. Theor. Biol., 188(3), 369–377.
[67] Smith, T. G., Lange, G. D., & Marks, W. B. (1996). Fractal methods and results in cellular morphology dimensions, lacunarity and multifractals. J. Neurosci. Methods, 69(2), 123–126.
[68] Sobottka, M., & Hart, A. G. (2010). On the nucleotide distribution in bacterial DNA sequences. Nat. Proc., 410(4), 823–828.
[69] Solis, F. J., & Tao, L. (1997). Lacunarity of random fractals. Phys. Lett. A, 228(6), 351–356. · Zbl 1043.37505
[70] Stanleya, H. E., Buldyreva, S. V., Goldbergerb, A. L., Havlin, S., Peng, C.-K., & Simons, M. (1999). Scaling features of noncoding DNA. Physica A, 273, 1–18.
[71] Strait, B. J., & Dewey, T. G. (1996). The Shannon information entropy of protein sequences. Biophys. J., 71(1), 148–155.
[72] Szybalski, W., Kubinski, H., & Sheldrick, P. (1966). Pyrimidine clusters on the transcribing strands of DNA and their possible role in the initiation of RNA synthesis. Quant. Biol., 31, 123–127.
[73] Tolle, C. R., Mc Junkin, T. R., Rohrbaugh, D. T., & LaViolette, R. A. (2003). Lacunarity definition for ramified data sets based on optimal cover. Physica D, 179(3), 15–129. · Zbl 1028.68035
[74] Vasilesu, C., Giza, D. E., Petrisor, P., Dobrescu, R., Popescu, I., & Herlea, V. (2012). Morphometrical differences between resectable and non-resectable pancreatic cancer: a fractal analysis. Hepatogastroentology, 59(113), 284–288.
[75] Voss, R. F. (1992a). Evolution of long-range fractal correlations and noise in DNA base sequences. Phys. Rev. Lett., 68(25), 3805–3808.
[76] Voss, R. F. (1992b). Long-range fractal correlations in DNA introns and exons. Fractals, 2(1), 1–6.
[77] Weaver, R. F. (2009). Molecular biology (2nd ed.). New York: McGraw-Hill.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.