×

Geometric nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation. (English) Zbl 1272.74372

Summary: This paper presents a geometric nonlinear analysis formulation for beams of functionally graded cross-sections by means of a Total Lagrangian formulation. The influence of material gradation on the numerical response is investigated in detail. Two examples are given that illustrate the main features of the formulation, in which the behavior of beams of graded cross-sections is compared with homogeneous material beams. A motivation for this work is the potential development of functionally graded risers for the offshore oil exploration industry.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74E05 Inhomogeneity in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] M., Almeida S. R.; H., Paulino G.; N., Silva E. C.: Layout and material gradation in topology optimization of functionally graded structures: a global – local approach, Structural and multidisciplinary optimization 42, 855-868 (2010) · Zbl 1274.74305
[2] A., Chakraborty; S., Gopalakrishnan; N., Reddy J.: A new beam finite element for the analysis of functionally graded materials, International journal for numerical methods in engineering 45, 519-539 (2003) · Zbl 1035.74053 · doi:10.1016/S0020-7403(03)00058-4
[3] Y., Chen; J., Struble L.; H., Paulino G.: Using rheology to achieve co-extrusion of cement-based materials with graded cellular structures, International journal of applied ceramic technology 5[5], 513-521 (2008)
[4] J., Choi H.; H., Paulino G.: Interfacial cracking in a graded coating/substrate system loaded by a frictional sliding flat punch, Proceedings of the royal society A 466, 853-880 (2010) · Zbl 1195.74146 · doi:10.1098/rspa.2009.0437
[5] V., Dave E.; H., Paulino G.; G., Buttlar W.: Viscoelastic functionally graded finite-element method using correspondence principle, ASCE-journal of materials in civil engineering 23, No. 1, 39-48 (2011)
[6] H., Ilstad; A., Naes H.; G., Endal: Strengthening effect from steel pipe cladding in pure bending, (2006)
[7] H., Kim J.; H., Paulino G.: Finite element evaluation of mixed mode stress intensity factors in functionally graded materials, International journal for numerical methods in engineering 53, 1903-1935 (2002) · Zbl 1169.74612 · doi:10.1002/nme.364
[8] N., Lages E.; H., Paulino G.; M., Menezes I. F.; R., Silva R.: Nonlinear finite element analysis using an object-oriented philosophy – application to beam elements and to the Cosserat continuum, Engineering with computers 15, 73-89 (1999)
[9] Y., Miyamoto; A., Kaysser W.; H., Rabin B.; A., Kawasaki: Functionally graded materials: design, processing and applications, (1999)
[10] Y., Ng T.; Y., Lam K.; M., Liew K.: Effects of FGM materials on the parametric resonance of plate structures, Computer methods in applied mechanics and engineering 190, No. 8 – 10, 953-962 (2000) · Zbl 1009.74038 · doi:10.1016/S0045-7825(99)00455-7
[11] C., Pacoste; A., Eriksson: Beam elements in instability problems, Computer methods in applied mechanics and engineering 144, 163-197 (1997) · Zbl 0892.73069 · doi:10.1016/S0045-7825(96)01165-6
[12] H., Paulino G.; M., Yin H.; Z., Sun L.: Micromechanics-based interfacial debonding model for damage of functionally graded materials with particle interactions, International journal of damage mechanics (2006)
[13] H., Paulino G.; A., Sutradhar: The simple boundary element method for multiple cracks in functionally graded media governed by potential theory: a three-dimensional Galerkin approach, International journal for numerical methods in engineering 65, 2007-2034 (2006) · Zbl 1120.74054 · doi:10.1002/nme.1486
[14] H., Paulino G.; N., Silva E. C.; H., Le C.: Optimal design of periodic functionally graded composites with prescribed properties, Structural and multidisciplinary optimization 38, 469-489 (2009) · Zbl 1274.74289
[15] N., Reddy J.: On locking-free shear deformable beam finite elements, Computer methods in applied mechanics and engineering 149, 113-132 (1997) · Zbl 0918.73131 · doi:10.1016/S0045-7825(97)00075-3
[16] Rasmussen, K., 2008. JIP Lined and Clad Pipelines, Phase 2 – Installation and Operation, Local Buckling, DNV Report N\circ 2007-3075, Revision 01.
[17] N., Reddy J.; Q., Cheng Z.: Three-dimensional solutions of smart functionally graded plates, Journal of applied mechanics 68, 234-241 (2001) · Zbl 1110.74647 · doi:10.1115/1.1347994
[18] N., Silva E. C.; C., Walters M.; H., Paulino G.: Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials, Journal of materials science 41, 6991-7004 (2006)
[19] B., Shen; M., Hubler; H., Paulino G.; J., Struble L.: Functionally-graded fiber-reinforced cement composite: processing, microstructure, and properties, Cement & concrete composites 30, 663-673 (2008)
[20] S., Suresh; A., Mortensen; A., Needleman: Fundamentals of metal-matrix composites, (1993)
[21] S., Suresh; A., Mortensen: Fundamentals of functionally graded materials, (1998)
[22] N., Tutuncu: Stresses in thick-walled FGM cylinders with exponentially varying properties, Engineering structures 29, 2032-2035 (2007)
[23] M., Yin H.; Z., Sun L.; H., Paulino G.: Micromechanics-based elastic model for functionally graded materials with particle interactions, Acta materialia 52, No. 12, 3535-3543 (2004)
[24] Z., Zhang; H., Paulino G.: Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements, International journal for numerical methods in engineering 44, 3601-3626 (2007) · Zbl 1182.74128 · doi:10.1016/j.ijsolstr.2005.05.061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.