×

Unconditionally stable difference methods for delay partial differential equations. (English) Zbl 1272.65066

The authors study finite difference approximations of parabolic partial differential equations with time-delay. They show that a variant of the classical second-order central difference approximation of the diffusion operator together with an approximation of the delay argument through linear interpolation and with the trapezoidal rule or with the second-order backward differentiation formula for the time derivative lead to a discretization which unconditionally preserves the delay dependent asymptotic stability of the linear test problem. Some numerical experiments illustrate the theoretical findings.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35R10 Partial functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Baker C.T.H., Ford N.J.: Some applications of the boundary-locus method and the method of D-partitions. IMA J. Numer. Anal. 11, 143–158 (1991) · Zbl 0726.65152 · doi:10.1093/imanum/11.2.143
[2] Bellen A., Zennaro M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003) · Zbl 1038.65058
[3] Bickart T.A.: P-stable and P[{\(\alpha\)},{\(\beta\)}]-stable integration interpolation methods in the solution of retarded differential- difference equations. BIT 22, 464–476 (1982) · Zbl 0531.65044 · doi:10.1007/BF01934410
[4] Bocharov G.A., Marchuk G.I., Romanyukha A.A.: Numerical solution by LMMs of stiff delay differential systems modelling an immune response. Numer. Math. 73, 131–148 (1996) · Zbl 0859.65077 · doi:10.1007/s002110050188
[5] Brunner H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics, vol. 15. Cambridge University Press, Cambridge (2004) · Zbl 1059.65122
[6] Diekmann O., Van Gils S.A., Verduin Lunel S.M., Walther H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Springer, Berlin (1995) · Zbl 0826.34002
[7] Guglielmi N.: On the asymptotic stability properties of Runge–Kutta methods for delay differential equations. Numer. Math. 77, 467–485 (1997) · Zbl 0885.65092 · doi:10.1007/s002110050296
[8] Guglielmi N.: Delay dependent stability regions of {\(\Theta\)}-methods for delay differential equations. IMA J. Numer. Anal. 18, 399–418 (1998) · Zbl 0909.65050 · doi:10.1093/imanum/18.3.399
[9] Guglielmi N., Hairer E.: Order stars and stability for delay differential equations. Numer. Math. 83, 371–383 (1999) · Zbl 0937.65079 · doi:10.1007/s002110050454
[10] Guglielmi N., Hairer E.: Geometric proofs of numerical stability for delay equations. IMA J. Numer. Anal. 21, 439–450 (2001) · Zbl 0976.65077 · doi:10.1093/imanum/21.1.439
[11] Higham D., Sarder T.: Existence and stability of fixed points for a discretised nonlinear reaction–diffusion equation with delay. Appl. Numer. Math. 18, 155–173 (1995) · Zbl 0834.65079 · doi:10.1016/0168-9274(95)00051-U
[12] Huang C.: Delay-dependent stability of high order Runge–Kutta methods. Numer. Math. 111, 377–387 (2009) · Zbl 1167.65045 · doi:10.1007/s00211-008-0197-z
[13] Huang C., Vandewalle S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Sci. Comput. 25, 1608–1632 (2004) · Zbl 1064.65078 · doi:10.1137/S1064827502409717
[14] in’t Hout K.J.: A new interpolation procedure for adapting Runge–Kutta methods to delay differential equations.. BIT 32, 634–649 (1992) · Zbl 0765.65069 · doi:10.1007/BF01994847
[15] Jaffer, S. K.: Delay-dependent numerical stability of delay differential equations and Kreiss resolvent condition. PhD thesis, Harbin Institute of Technology, Harbin (2001)
[16] Koto T.: A stability property of A-stable natural Runge–Kutta methods for systems of delay differential equations. BIT 34, 262–267 (1994) · Zbl 0805.65083 · doi:10.1007/BF01955873
[17] Koto T.: Stability of {\(\theta\)}-methods for delay integro-differential equations. J. Comput. Appl. Math. 161, 393–404 (2003) · Zbl 1042.65108 · doi:10.1016/j.cam.2003.04.004
[18] Maset S.: Stability of Runge–Kutta methods for linear delay differential equations. Numer. Math. 87, 355–371 (2000) · Zbl 0979.65069 · doi:10.1007/s002110000179
[19] Qiu L., Yang B., Kuang J.: The NGP-stability of Runge–Kutta methods for systems of neutral delay differential equations. Numer. Math. 81, 451–459 (1999) · Zbl 0918.65061 · doi:10.1007/s002110050399
[20] Thomas J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer, New York (1995) · Zbl 0831.65087
[21] van der Houwen P.J., Sommeijer B.P., Baker C.T.H.: On the stability of predictor–corrector methods for parabolic equations with delay. IMA J. Numer. Anal. 6, 1–23 (1986) · Zbl 0623.65094
[22] Watanabe D.S., Roth M.G.: The stability of difference formulas for delay differential equations. SIAM J. Numer. Anal. 22, 132–145 (1985) · Zbl 0571.65075 · doi:10.1137/0722010
[23] Wu J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996) · Zbl 0870.35116
[24] Wu S., Gan S.: Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations. Comput. Math. Appl. 55, 2426–2443 (2008) · Zbl 1142.45306 · doi:10.1016/j.camwa.2007.08.045
[25] Zennaro M.: P-stability of Runge–Kutta methods for delay differential equations. Numer. Math. 49, 305–318 (1986) · Zbl 0598.65056 · doi:10.1007/BF01389632
[26] Zubik-Kowal B.: Stability in the numerical solution of linear parabolic equations with a delay term. BIT 41, 191–206 (2001) · Zbl 0984.65091 · doi:10.1023/A:1021930104326
[27] Zubik-Kowal B., Vandewalle S.: Waveform relaxation for functional-differential equations. SIAM J. Sci. Comput. 21, 207–226 (1999) · Zbl 0945.65107 · doi:10.1137/S1064827598332916
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.