×

Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. (English) Zbl 1271.65018

The authors consider scalar hyperbolic conservation laws in spatial dimension \( d\geq 1\) with stochastic initial data. Existence and uniqueness of a random-entropy solution are proved and some sufficient conditions on the initial data that ensure the existence of statistical moments of any order \( k\) of this random entropy solution are given. A class of numerical schemes of multi-level Monte Carlo finite volume (MLMC-FVM) type for the approximation of the ensemble average of the random entropy solutions as well as of their \( k\)-point space-time correlation functions are presented. These schemes are shown to obey the same accuracy vs. work estimate as a single application of the finite volume solver for the corresponding deterministic problem. Numerical experiments demonstrating the efficiency of these schemes are presented. In certain cases, statistical moments of discontinuous solutions are found to be more regular than pathwise solutions.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65C05 Monte Carlo methods
35L65 Hyperbolic conservation laws
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Abgrall. A simple, flexible and generic deterministic approach to uncertainty quantification in non-linear problems. Rapport de Recherche, INRIA, 2007.
[2] Andrea Barth, Christoph Schwab, and Nathaniel Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numer. Math. 119 (2011), no. 1, 123 – 161. · Zbl 1230.65006 · doi:10.1007/s00211-011-0377-0
[3] Qian-Yong Chen, David Gottlieb, and Jan S. Hesthaven, Uncertainty analysis for the steady-state flows in a dual throat nozzle, J. Comput. Phys. 204 (2005), no. 1, 378 – 398. · Zbl 1143.76430 · doi:10.1016/j.jcp.2004.10.019
[4] Giuseppe Da Prato and Jerzy Zabcyk, Stochastic Equations in infinite dimensions, Cambridge Univ. Press (1991). · Zbl 0761.60052
[5] Constantine M. Dafermos, Hyperbolic conservation laws in continuum physics, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2005. · Zbl 1078.35001
[6] Weinan E, K. Khanin, A. Mazel, and Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. of Math. (2) 151 (2000), no. 3, 877 – 960. · Zbl 0972.35196 · doi:10.2307/121126
[7] Mike Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, Monte Carlo and quasi-Monte Carlo methods 2006, Springer, Berlin, 2008, pp. 343 – 358. · Zbl 1141.65321 · doi:10.1007/978-3-540-74496-2_20
[8] Michael B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), no. 3, 607 – 617. · Zbl 1167.65316 · doi:10.1287/opre.1070.0496
[9] Edwige Godlewski and Pierre-Arnaud Raviart, Hyperbolic systems of conservation laws, Mathématiques & Applications (Paris) [Mathematics and Applications], vol. 3/4, Ellipses, Paris, 1991. · Zbl 0768.35059
[10] E. Godlewski and P. A. Raviart, The numerical solution of multidimensional Hyperbolic Systems of Conservation Laws, Springer-Verlag, Berlin, Heidelberg, New York (1995). · Zbl 0768.35059
[11] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713 – 1020. · Zbl 0981.65095
[12] S. Heinrich. Multilevel Monte Carlo methods in Large-scale scientific computing, Third international conference LSSC 2001, Sozopol, Bulgaria, 2001, Lecture Notes in Computer Science, Vol. 2170, Springer-Verlag (2001), pp. 58-67. · Zbl 1031.65005
[13] Helge Holden and Nils Henrik Risebro, Front tracking for hyperbolic conservation laws, Applied Mathematical Sciences, vol. 152, Springer-Verlag, New York, 2002. · Zbl 1006.35002
[14] H. Holden and N. H. Risebro, Conservation laws with a random source, Appl. Math. Optim. 36 (1997), no. 2, 229 – 241. · Zbl 0885.35069 · doi:10.1007/s002459900061
[15] H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, and T.-S. Zhang, The Burgers equation with a noisy force and the stochastic heat equation, Comm. Partial Differential Equations 19 (1994), no. 1-2, 119 – 141. · Zbl 0804.35158 · doi:10.1080/03605309408821011
[16] Dietmar Kröner, Numerical schemes for conservation laws, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1997. · Zbl 0872.76001
[17] R.A. LeVeque, Numerical Solution of Hyperbolic Conservation Laws, Cambridge Univ. Press, 2005.
[18] W. A. Light and E. W. Cheney, Approximation theory in tensor product spaces, Lecture Notes in Mathematics, vol. 1169, Springer-Verlag, Berlin, 1985. · Zbl 0575.41001
[19] G. Lin, C. H. Su, and G. E. Karniadakis, The stochastic piston problem, Proc. Natl. Acad. Sci. USA 101 (2004), no. 45, 15840 – 15845. · Zbl 1135.76334 · doi:10.1073/pnas.0405889101
[20] S. Mishra and Ch. Schwab, Entropy Stability of stochastic Galerkin and inifinite dimensional hyperbolic systems obtained from general moment closures, Working Paper, SAM, 2011.
[21] S. Mishra, Ch. Schwab and J. Šukys, Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions, Report 2011-53, SAM, February 2011 (in review). · Zbl 1402.76083
[22] Gaël Poëtte, Bruno Després, and Didier Lucor, Uncertainty quantification for systems of conservation laws, J. Comput. Phys. 228 (2009), no. 7, 2443 – 2467. · Zbl 1161.65309 · doi:10.1016/j.jcp.2008.12.018
[23] Tobias von Petersdorff and Christoph Schwab, Sparse finite element methods for operator equations with stochastic data, Appl. Math. 51 (2006), no. 2, 145 – 180. · Zbl 1164.65300 · doi:10.1007/s10492-006-0010-1
[24] Ch. Schwab and S. Tokareva, High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data, Report SAM 2011-53.
[25] Joel Smoller, Shock waves and reaction-diffusion equations, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. · Zbl 0807.35002
[26] Radu-Alexandru Todor, A new approach to energy-based sparse finite-element spaces, IMA J. Numer. Anal. 29 (2009), no. 1, 72 – 85. · Zbl 1159.65095 · doi:10.1093/imanum/drm041
[27] J. Tryoen, O. Le Maître, M. Ndjinga, and A. Ern, Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems, J. Comput. Phys. 229 (2010), no. 18, 6485 – 6511. · Zbl 1197.65013 · doi:10.1016/j.jcp.2010.05.007
[28] Xiaoliang Wan and George Em Karniadakis, Long-term behavior of polynomial chaos in stochastic flow simulations, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 41-43, 5582 – 5596. · Zbl 1123.76058 · doi:10.1016/j.cma.2005.10.016
[29] William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.