×

Gibbs phenomenon removal by adding Heaviside functions. (English) Zbl 1269.42001

Summary: We define a kind of spectral series to filter off completely the Gibbs phenomenon without overshooting and distortional approximation near a point of discontinuity. The construction of this series is based on the method of adding the Fourier coefficients of a Heaviside function to the given Fourier partial sums. More precisely, we prove the uniform convergence of the proposed series on the class of piecewise smooth functions. Also, we attach two numerical examples which illustrate the uniform convergence of the suggested series in comparison with the Fourier partial sums.

MSC:

42A10 Trigonometric approximation
42A20 Convergence and absolute convergence of Fourier and trigonometric series
65T40 Numerical methods for trigonometric approximation and interpolation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adcock, B.: Gibbs phenomenon and its removal for a class of orthogonal expansions. BIT Numer. Math. doi:10.1007/s10543-010-0301-5 · Zbl 1394.41008
[2] Allebach, J.P.: Selected papers on digital halftoning. SPIE Milestone Series, vol. MS 154 (1999) · Zbl 0885.42003
[3] Beckermann, B; Matos, AC; Wielonsky, F, Reduction of the Gibbs phenomenon for smooth functions with jumps by the \(ϵ\)-algorithm, J. Comput. App. Math., 219, 329-349, (2008) · Zbl 1165.65087 · doi:10.1016/j.cam.2007.11.011
[4] Boyd, JP, Trouble with Gegenbauer reconstruction for defeating gibbs’ phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations, J. Comput. Phys., 204, 253-264, (2005) · Zbl 1071.65189 · doi:10.1016/j.jcp.2004.10.008
[5] Brezinski, C, Extrapolation algorithms for filtering series of functions, and treating the Gibbs phenomenon, Numer. Algorithms, 36, 309-329, (2004) · Zbl 1071.42003 · doi:10.1007/s11075-004-2843-6
[6] Cai, C; Gottlieb, D; Shu, CW, Essentially nonoscillatory spectral Fourier method for shocks wave calculations, Math. Comput., 52, 389-410, (1989) · Zbl 0666.65067
[7] Driscoll, TA; Fornberg, B, A Padé-based algorithm for overcoming the Gibbs phenomenon, Numer. Algorithms, 26, 77-92, (2001) · Zbl 0973.65133 · doi:10.1023/A:1016648530648
[8] Eckhoff, LS, Accurate reconstructions of functions of finite regularity from truncated Fourier series expansion, Math. Comput., 64, 671-690, (1995) · Zbl 0830.65144 · doi:10.1090/S0025-5718-1995-1265014-7
[9] Eckhoff, LS, On a high order numerical method for functions with singularities, Math. Comput., 67, 1063-1087, (1998) · Zbl 0895.65067 · doi:10.1090/S0025-5718-98-00949-1
[10] Gelb, A, A hybrid approach to spectral reconstruction of piecewise smooth functions, J. Sci. Comput., 15, 293-322, (2000) · Zbl 0984.65148 · doi:10.1023/A:1011126400782
[11] Gelb, A; Gottlieb, D, The resolution of the Gibbs phenomenon for spliced functions in one and two dimensions, Comput. Math. Appl., 33, 35-58, (1997) · Zbl 0911.65145 · doi:10.1016/S0898-1221(97)00086-2
[12] Gelb, A; Tanner, J, Robust reprojection methods for the resolution of the Gibbs phenomenon, Appl. Comput. Harmon. Anal., 20, 3-25, (2006) · Zbl 1088.42001 · doi:10.1016/j.acha.2004.12.007
[13] Gottlieb, D; Shu, C, On the Gibbs phenomenon III: recovering exponential accuracy in a sub-interval from a spectral partial sum of a piecewise analytic function, SIAM J. Numer. Anal., 33, 280-290, (1996) · Zbl 0852.42017 · doi:10.1137/0733015
[14] Gottlieb, D; Shu, C, On the Gibbs phenomenon IV: recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function, Math. Comput., 64, 108-1905, (1995)
[15] Gottlieb, D; Shu, C, On the Gibbs phenomenon V: recovering exponential accuracy from collocation point values of a piecewise analytic function, Numer. Math., 71, 511-526, (1995) · Zbl 0852.42019 · doi:10.1007/s002110050155
[16] Gottlieb, D; Shu, C, On the Gibbs phenomenon and its resolution, SIAM Rev., 39, 644-668, (1997) · Zbl 0885.42003 · doi:10.1137/S0036144596301390
[17] Gottlieb, D; Shu, CW; Solomonoff, A; Vandeven, H, On the Gibbs phenomenon I - recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, J. Comput. Appl. Math., 43, 81-98, (1992) · Zbl 0781.42022 · doi:10.1016/0377-0427(92)90260-5
[18] Greene, N.: A wavelet-based method for overcoming the Gibbs phenomenon. American Conference on Applied Mathematics (’08), Harvard, Massachusetts, USA, 24-26 March 2008
[19] Greene, N, Inverse wavelet reconstruction for resolving the Gibbs phenomenon, Int. J. CSSP, 2, 73-77, (2008)
[20] Jerri, A.J.: The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Kluwer Academic Publ., London (1998) · Zbl 0918.42001 · doi:10.1007/978-1-4757-2847-7
[21] Jerri, AJ, Lanczos-like \(σ\)-factors for reducing the Gibbs phenomenon in general orthogonal expansions and other representations, J. Comput. Anal., 2, 111-127, (2000) · Zbl 0952.42015
[22] Jung, J, A note on the Gibbs phenomenon with multiquadric radial basis functions, Appl. Numer. Math., 57, 213-229, (2007) · Zbl 1107.65354 · doi:10.1016/j.apnum.2006.02.006
[23] Jung, J; Shizgal, BD, Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon, J. Comput. Appl. Math., 172, 131-151, (2004) · Zbl 1053.65102 · doi:10.1016/j.cam.2004.02.003
[24] Jung, J; Shizgal, BD, On the numerical convergence with the inverse polynomial reconstruction method for the resolution of the Gibbs phenomenon, J. Comput. Phys., 224, 477-488, (2007) · Zbl 1117.65176 · doi:10.1016/j.jcp.2007.01.018
[25] Kvernadze, G, Detection of the jumps of a bounded function by its Fourier series, J. Approx. Theory, 92, 167-190, (1998) · Zbl 0902.42001 · doi:10.1006/jath.1997.3125
[26] Kvernadze, G; Hagstrom, T; Shapiro, H, Locating discontinuities of a bounded function by the partial sums of its Fourier series, J. Sci. Comput., 14, 301-329, (1999) · Zbl 0958.65146 · doi:10.1023/A:1023204330916
[27] Lehmann, TM; Goenner, C; Spitzer, K, Survey: interpolation methods in medical image processing, IEEE Trans. Med. Imag., 18, 1049-1075, (1999) · doi:10.1109/42.816070
[28] Pan, C, Gibbs phenomenon removal and digital filtering directly through the fast Fourier transform, IEEE Trans. Signal Process., 49, 444-448, (2001) · doi:10.1109/78.902128
[29] Pasquetti, R, On inverse methods for the resolution of the Gibbs phenomenon, J. Comput. Appl. Math., 170, 303-315, (2004) · Zbl 1049.65155 · doi:10.1016/j.cam.2004.01.026
[30] Pinkus, A., Zafrany, S.: Fourier Analysis and Integral Transforms. Cambridge Univ. Press, Cambridge (1997) · Zbl 0999.42500 · doi:10.1017/CBO9781139173117
[31] Ruch, DK; Fleet, PJ, Gibbs’ phenomenon for nonnegative compactly supported scaling vectors, J. Math. Anal. Appl., 304, 370-382, (2005) · Zbl 1073.42025 · doi:10.1016/j.jmaa.2004.09.030
[32] Sarra, SA, Digital total variation filtering as postprocessing for Chebyshev pseudospectral methods for conservation laws, Numer. Algorithms, 41, 17-33, (2006) · Zbl 1088.65093 · doi:10.1007/s11075-005-9003-5
[33] Sarra, SA, Digital total variation filtering as postprocessing for radial basis function approximation methods, Comput. Math. Appl., 52, 1119-1130, (2006) · Zbl 1125.65016 · doi:10.1016/j.camwa.2006.02.013
[34] Shizgal, SD; Jung, JH, Toward the resolution of the Gibbs phenomena, J. Comput. Appl. Math., 161, 41-65, (2003) · Zbl 1033.65122 · doi:10.1016/S0377-0427(03)00500-4
[35] E. Tadmor. Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer. doi:10.1017/s0962492906320016 · Zbl 1125.65122
[36] Vandeven, H, Familly of spectral filters for discontinuous problems, J. Sci. Comput., 6, 159-192, (1991) · Zbl 0752.35003 · doi:10.1007/BF01062118
[37] Vosovoi, L; Israel, M; Averbuch, A, Analysis and application of Fourier-Gegenbauer method to stiff differential equations, SIAM J. Numer. Anal., 33, 1844-1863, (1996) · Zbl 0864.41007 · doi:10.1137/S0036142994263591
[38] Wangüemert-Pŕez, JG; Godoy-Rubio, R; Ortega-Moñux, A; Molina-Fernández, I, Removal of the Gibbs phenomenon and its application to fast-Fourier-transform-based mode solvers, J. Opt. Soc. Am., 24, 3772-3780, (2007) · doi:10.1364/JOSAA.24.003772
[39] Zygmund, A.: Trigonometric Series. Cambridge Univ. Press, Cambridge (1979) · JFM 58.0296.09
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.