×

Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. (English) Zbl 1268.76061

Comput. Math. Appl. 64, No. 9, 2816-2832 (2012); corrigendum ibid. 69, No. 12, 1518 (2015).
Summary: The steady mixed convection boundary layer flow of an incompressible nanofluid along a plate inclined at an angle \(\alpha \) in a porous medium is studied. The resulting nonlinear governing equations with associated boundary conditions are solved using an optimized, robust, extensively validated, variational finite-element method (FEM) and a finite-difference method (FDM) with a local non-similar transformation. The Nusselt number is found to decrease with increasing Brownian motion number (Nb) or thermophoresis number (Nt), whereas it increases with increasing angle \(\alpha \). In addition, the local Sherwood number is found to increase with a rise in Nt, whereas it is reduced with an increase in Nb and angle \(\alpha \). The effects of Lewis number, buoyancy ratio, and mixed convection parameter on temperature and concentration distributions are also examined in detail. The present study is of immediate interest in next-generation solar film collectors, heat-exchanger technology, material processing exploiting vertical and inclined surfaces, geothermal energy storage, and all those processes which are greatly affected by a heat-enhancement concept.

MSC:

76S05 Flows in porous media; filtration; seepage
76R10 Free convection
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yu, D. M.; Routbort, J. L.; Choi, S., Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Eng., 29, 432-460 (2008)
[2] Choi, S., Enhancing thermal conductivity of fluids with nanoparticles, (Siginer, D. A.; Wang, H. P., Developments and Applications of Non-Newtonian Flows, FED-Vol. 231, MD-Vol. 66 (1995), ASME), 99-105
[3] Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N., Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, Netsu Bussei (Japan), 7, 4, 227-233 (1993)
[4] Buongiorno, J., Convective transport in nanofluids, ASME J. Heat Transfer, 128, 240-250 (2006)
[5] Das, S. K.; Choi, S.; Yu, W.; Pradeep, T., Nanofluids: Science and Technology (2007), Wiley Interscience: Wiley Interscience New Jersey
[6] Eastman, J.; Choi, S. U.S.; Lib, S.; Yu, W.; Thompson, L. J., Anomalously increased effective thermal conductivities of ethylene-glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 6, 718-720 (2001)
[7] J. Buongiorno, W. Hu, Nanofluid coolants for advanced nuclear power plants, in: paper no. 5705, Proc. ICAPP ’05, Seoul, May 15-19, 2005.; J. Buongiorno, W. Hu, Nanofluid coolants for advanced nuclear power plants, in: paper no. 5705, Proc. ICAPP ’05, Seoul, May 15-19, 2005.
[8] Kuznetsov, A. V.; Nield, D. A., Natural convection boundary-layer of a nanofluid past a vertical plate, Int. J. Therm. Sci., 49, 243-247 (2010)
[9] Nield, D. A.; Kuznetsov, A. V., The Cheng-Minkowycz problem for natural convection boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transfer, 52, 5792-5795 (2009) · Zbl 1177.80046
[10] Cheng, P.; Minkowycz, W. J., Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res., 82, 2040-2044 (1977)
[11] Khan, W. A.; Pop, I., Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer, 53, 2477-2483 (2010) · Zbl 1190.80017
[12] Tzou, D. Y., Thermal instability of nanofluids in natural convection, Int. J. Heat Mass Transfer, 51, 2967-2979 (2008) · Zbl 1143.80330
[13] Tzou, D. Y., Instability of nanofluids in natural convection, ASME J. Heat Transfer, 130, 1-9 (2008) · Zbl 1143.80330
[14] Bachok, N.; Ishak, A.; Pop, I., Boundary layer flow of nanofluid over a moving surface in a flowing fluid, Int. J. Therm. Sci., 49, 9, 1663-1668 (2010)
[15] Polidori, G.; Fohanno, S.; Nguyen, C. T., A note on heat transfer modelling of Newtonian nanofluids in laminar free convection, Int. J. Therm. Sci., 46, 739-744 (2007)
[16] Ho, C. J.; Chen, M. W.; Li, Z. W., Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Mass Transfer, 51, 4506-4516 (2008) · Zbl 1144.80317
[17] Putra, N.; Roetzel, W.; Das, S. K., Natural convection of nano-fluids, Int. J. Heat Mass Transfer, 39, 775-784 (2003)
[18] Jang, S. P.; Choi, S. U.S., Cooling performance of a microchannel heat sink with nanofluids, Appl. Therm. Eng., 26, 2457-2463 (2006)
[19] A.G.A. Nanna, T. Fistrovich, K. Malinski, S. Choi, Thermal transport phenomena in buoyancy-driven nanofluids, in: Proc. 2005 ASME Int. Mechanical Engineering Congress and RD&D Exposition, 15-17 November, Anaheim, California, USA, 2004.; A.G.A. Nanna, T. Fistrovich, K. Malinski, S. Choi, Thermal transport phenomena in buoyancy-driven nanofluids, in: Proc. 2005 ASME Int. Mechanical Engineering Congress and RD&D Exposition, 15-17 November, Anaheim, California, USA, 2004.
[20] Lai, F. C., Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium, Int. Commun. Heat Mass Transfer, 18, 93-106 (1991)
[21] Bejan, A.; Khair, K. R., Heat and mass transfer by natural convection in a porous medium, Int. J. Heat Mass Transfer, 28, 909-918 (1985) · Zbl 0564.76085
[22] Lai, F. C.; Kulacki, F. A., Coupled heat and mass transfer by natural convection from vertical surface in porous medium, Int. J. Heat Mass Transfer, 34, 1189-1194 (1991)
[23] Murthy, P. V.S. N.; Singh, P., Heat and mass transfer by natural convection in a non-Darcian porous medium, Acta Mech., 138, 243-254 (1999) · Zbl 0956.76088
[24] Anwar Bég, O.; Takhar, H. S.; Bég, T. A.; Bhargava, R.; Rawat, S., Nonlinear Magneto-heat transfer in a fluid-particle suspension flowing via a non-Darcian channel with heat source and buoyancy effects: numerical study, J. Engrg. Sci., 19, 1, 63-88 (2008), King Abdul Aziz University
[25] Bhargava, R.; Sharma, R.; Bég, O. A., Oscillatory chemically-reacting MHD free convection heat and mass transfer in a porous medium with Soret and Dufour effects: finite element modeling, Int. J. Appl. Math. Mech., 5, 6, 15-37 (2009)
[26] Cheng, P., Combined free and forced convection flow about inclined surfaces in porous media, Int. J. Heat Mass Transfer, 20, 807-814 (1977) · Zbl 0387.76076
[27] Chamkha, Ali J.; Issa, Camille; Khanafer, Khalil, Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation, Int. J. Therm. Sci., 41, 73-81 (2002)
[28] Alam, M. S.; Rahman, M. M.; Sattar, M. A., Similarity solutions for hydromagnetic free convective heat and mass transfer flow along a semi-infinite permeable inclined flat plate with heat generation and thermophoresis, Nonlinear Anal. Model. Control, 12, 433-445 (2007) · Zbl 1263.76080
[29] Rahman, M. M.; Aziz, A.; Al-Lawatia, M. A., Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties, Int. J. Therm. Sci., 49, 993-1002 (2010)
[30] Anwar Bég, O.; Takhar, H. S.; Bhargava, R.; Rawat, S.; Prasad, V. R., Numerical study of heat transfer of a third grade viscoelastic fluid in non-Darcian porous media with thermophysical effects, Phys. Scr., 77, 1-11 (2008) · Zbl 1162.76052
[31] Reddy, J. N., An Introduction to the Finite Element Method (1985), McGraw-Hill Book Co.: McGraw-Hill Book Co. New York · Zbl 0633.65104
[32] Rana, P.; Bhargava, R., Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study, Comm. Nonlinear Sci. Numer. Simulat., 17, 1, 212-226 (2012)
[33] Anwar Bég, O.; Bhargava, R.; Rashidi, M. M., Numerical Simulation in Micropolar Fluid Dynamics: Mathematical Modelling of Nonlinear Flows of Micropolar Fluids (2011), Lambert Academic Publishing: Lambert Academic Publishing Saarbrücken, Germany, p. 296
[34] P. Keblinski, Nanofluids for enhanced thermal transport: understanding and controversy, in: Symposium II Nanoscale Heat Transport—From Fundamentals to Devices, Materials Research Society Spring Symposium, 10-13 April, San Francisco, USA, 2007.; P. Keblinski, Nanofluids for enhanced thermal transport: understanding and controversy, in: Symposium II Nanoscale Heat Transport—From Fundamentals to Devices, Materials Research Society Spring Symposium, 10-13 April, San Francisco, USA, 2007.
[35] Ravi, P.; Bhattacharya, P.; Phelan, P. E., Thermal conductivity of nanoscale colloidal solutions (Nanofluids), Phys. Rev. Lett., 94, 25901-1-25901-4 (2005)
[36] Zueco, J.; Anwar Bég, O.; Takhar, H. S.; Prasad, V. R., Thermophoretic hydromagnetic dissipative heat and mass transfer with lateral mass flux, heat source, Ohmic heating and thermal conductivity effects: network simulation numerical study, Appl. Therm. Eng., 29, 2808-2815 (2009)
[37] Goren, S. L., Thermophoresis of aerosol particles into laminar boundary layer on a flat plate, J. Colloid Interface Sci., 61, 77-85 (1977)
[38] Talbot, L.; Cheng, R. K.; Schefer, R. W.; Willis, D. R., Thermophoresis of particles in a heated boundary layer, J. Fluid Mech., 101, 737-758 (1980)
[39] Bathe, K. J., Finite Element Procedures (1996), Prentice-Hall: Prentice-Hall New Jersey, USA · Zbl 0511.73065
[40] A. Lenert, Nanofluid-based receivers for high-temperature, high-flux direct solar collectors, MS Thesis, Dept. of Mechanical Engineering Massachusetts Institute of Technology, USA, 2010.; A. Lenert, Nanofluid-based receivers for high-temperature, high-flux direct solar collectors, MS Thesis, Dept. of Mechanical Engineering Massachusetts Institute of Technology, USA, 2010.
[41] T.A. Bég, O. Anwar Bég, M.M. Rashidi, M. Asadi, Homotopy semi-numerical modelling of transient nanofluid convection flow from an isothermal spherical body in a permeable regime: A hybrid solar collector, Nanoscale Res. Lett. (2011) (submitted for publication).; T.A. Bég, O. Anwar Bég, M.M. Rashidi, M. Asadi, Homotopy semi-numerical modelling of transient nanofluid convection flow from an isothermal spherical body in a permeable regime: A hybrid solar collector, Nanoscale Res. Lett. (2011) (submitted for publication).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.