×

An algorithm for fast computation of 3D Zernike moments for volumetric images. (English) Zbl 1264.94012

Summary: An algorithm is proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments are expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method is proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm is also employed to add more complexity reduction. The comparison with existing methods is performed, where the numerical experiments and the complexity analysis ensured the efficiency of the proposed method especially with image and objects of large sizes.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. K. Hu, “Visual pattern recognition by moment invariants,” IRE Transaction on Information Theory, vol. 8, no. 2, pp. 179-187, 1962. · Zbl 0102.13304
[2] M. R. Teague, “Image analysis via the general theory of moments,” Journal of the Optical Society of America, vol. 70, no. 8, pp. 920-930, 1980. · doi:10.1364/JOSA.70.000920
[3] C. H. Teh and R. T. Chin, “On image analysis by the methods of moments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 4, pp. 496-513, 1988. · Zbl 0709.94543 · doi:10.1109/34.3913
[4] L. Wang and G. Healey, “Using Zernike moments for the illumination and geometry invariant classification of multispectral texture,” IEEE Transactions on Image Processing, vol. 7, no. 2, pp. 196-203, 1998. · doi:10.1109/83.660996
[5] A. Broumandnia and J. Shanbehzadeh, “Fast Zernike wavelet moments for Farsi character recognition,” Image and Vision Computing, vol. 25, no. 5, pp. 717-726, 2007. · doi:10.1016/j.imavis.2006.05.014
[6] X. F. Wang, D. S. Huang, J. X. Du, H. Xu, and L. Heutte, “Classification of plant leaf images with complicated background,” Applied Mathematics and Computation, vol. 205, no. 2, pp. 916-926, 2008. · Zbl 1152.68689 · doi:10.1016/j.amc.2008.05.108
[7] Y. S. Kim and W. Y. Kim, “Content-based trademark retrieval system using a visually salient feature,” Image and Vision Computing, vol. 16, no. 12-13, pp. 931-939, 1998. · doi:10.1016/S0262-8856(98)00060-2
[8] W. C. Kim, J. Y. Song, S. W. Kim, and S. Park, “Image retrieval model based on weighted visual features determined by relevance feedback,” Information Sciences, vol. 178, no. 22, pp. 4301-4313, 2008. · Zbl 05368810 · doi:10.1016/j.ins.2008.06.025
[9] S. Li, M. C. Lee, and C. M. Pun, “Complex Zernike moments features for shape-based image retrieval,” IEEE Transactions on Systems, Man, and Cybernetics A, vol. 39, no. 1, pp. 227-237, 2009. · doi:10.1109/TSMCA.2008.2007988
[10] H. S. Kim and H. K. Lee, “Invariant image watermark using Zernike moments,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 8, pp. 766-775, 2003. · Zbl 05451117 · doi:10.1109/TCSVT.2003.815955
[11] Y. Chen, F. Qu, J. Hu, and Z. Chen, “A geometric robust watermarking algorithm based on DWT-DCT and Zernike moments,” Wuhan University Journal of Natural Sciences, vol. 13, no. 6, pp. 753-758, 2008. · doi:10.1007/s11859-008-0623-1
[12] I. A. Ismail, M. A. Shouman, K. M. Hosny, and H. M. Abdel Salam, “Invariant image watermarking using accurate Zernike moments,” Journal of Computer Science, vol. 6, no. 1, pp. 52-59, 2010. · doi:10.3844/jcssp.2010.52.59
[13] C. Lu and Z. Lu, “Zernike moment invariants based iris recognition,” Lecture Notes in Computer Science, vol. 3338, pp. 554-561, 2004.
[14] H. J. Kim and W. Y. Kim, “Eye detection in facial images using Zernike moments with SVM,” ETRI Journal, vol. 30, no. 2, pp. 335-337, 2008. · doi:10.4218/etrij.08.0207.0150
[15] V. S. Bharathi and L. Ganesan, “Orthogonal moments based texture analysis of CT liver images,” Pattern Recognition Letters, vol. 29, no. 13, pp. 1868-1872, 2008. · doi:10.1016/j.patrec.2008.06.003
[16] W. Liyun, L. Hefei, Z. Fuhao, L. Zhengding, and W. Zhendi, “Spermatogonium image recognition using Zernike moments,” Computer Methods and Programs in Biomedicine, vol. 95, no. 1, pp. 10-22, 2009. · Zbl 05748696 · doi:10.1016/j.cmpb.2009.01.008
[17] Z. Iscan, Z. Dokur, and T. Ölmez, “Tumor detection by using Zernike moments on segmented magnetic resonance brain images,” Expert Systems with Applications, vol. 37, no. 3, pp. 2540-2549, 2010. · doi:10.1016/j.eswa.2009.08.003
[18] Q. Ying-Dong, C. Cheng-Song, C. San-Ben, and L. Jin-Quan, “A fast subpixel edge detection method using Sobel-Zernike moments operator,” Image and Vision Computing, vol. 23, no. 1, pp. 11-17, 2005. · doi:10.1016/j.imavis.2004.07.003
[19] T. Funkhouser, P. Min, M. Kazhdan et al., “A search engine for 3D models,” ACM Transactions on Graphics, vol. 22, no. 1, pp. 83-105, 2003. · Zbl 05457261 · doi:10.1145/588272.588279
[20] N. Canterakis, “3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition,” in Proceedings of the 11th Scandinavian Conference on Image Analysis, pp. 85-93, 1996.
[21] M. Novotni and R. Klein, “Shape retrieval using 3D Zernike descriptors,” Computer-Aided Design, vol. 36, no. 11, pp. 1047-1062, 2004. · Zbl 05861138 · doi:10.1016/j.cad.2004.01.005
[22] R. D. Millán, L. Dempere-Marco, J. M. Pozo, J. R. Cebral, and A. F. Frangi, “Morphological characterization of intracranial aneurysms using 3-D moment invariants,” IEEE Transactions on Medical Imaging, vol. 26, no. 9, pp. 1270-1282, 2007. · doi:10.1109/TMI.2007.901008
[23] W. Qiuting and Y. Bing, “3D terrain matching algorithm and performance analysis based on 3D Zernike moments,” in Proceedings of the International Conference on Computer Science and Software Engineering (CSSE ’08), vol. 6, pp. 73-76, Wuhan, China, December 2008. · doi:10.1109/CSSE.2008.828
[24] L. Sael, D. La, B. Li, et al., “Rapid comparison of properties on protein surface,” Proteins, vol. 73, no. 1, pp. 1-10, 2008. · doi:10.1002/prot.22141
[25] L. Sael, B. Li, D. La et al., “Fast protein tertiary structure retrieval based on global surface shape similarity,” Proteins, vol. 72, no. 4, pp. 1259-1273, 2008. · doi:10.1002/prot.22030
[26] G. A. Papakostas, Y. S. Boutalis, D. A. Karras, and B. G. Mertzios, “A new class of Zernike moments for computer vision applications,” Information Sciences, vol. 177, no. 13, pp. 2802-2819, 2007. · Zbl 1116.68103 · doi:10.1016/j.ins.2007.01.010
[27] M. S. Al-Rawi, “Fast Zernike moments,” Journal of Real-Time Image Processing, vol. 3, no. 1-2, pp. 89-96, 2008. · doi:10.1007/s11554-007-0069-2
[28] C.-Y. Wee and R. Paramesran, “On the computational aspects of Zernike moments,” Image and Vision Computing, vol. 25, no. 6, pp. 967-980, 2007. · doi:10.1016/j.imavis.2006.07.010
[29] K. M. Hosny, “Fast computation of accurate Zernike moments,” Journal of Real-Time Image Processing, vol. 3, no. 1-2, pp. 97-107, 2008. · doi:10.1007/s11554-007-0058-5
[30] K. M. Hosny, “A systematic method for efficient computation of full and subsets Zernike moments,” Information Sciences, vol. 180, no. 11, pp. 2299-2313, 2010. · Zbl 1200.68266 · doi:10.1016/j.ins.2010.02.006
[31] K. M. Hosny, “Exact and fast computation of geometric moments for gray level images,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1214-1222, 2007. · Zbl 1124.94003 · doi:10.1016/j.amc.2006.12.025
[32] K. M. Hosny, “Fast and low-complexity method for exact computation of 3D Legendre moments,” Pattern Recognition Letters, vol. 32, no. 9, pp. 1305-1314, 2011. · doi:10.1016/j.patrec.2011.03.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.