×

Existence results for fractional differential inclusions with multivalued term depending on lower-order derivative. (English) Zbl 1264.34010

The paper studies a fractional-order differential inclusion of the form \[ D_C^{\alpha }x(t)\in F(t,x(t),D_C^{\beta }x(t))\quad \text{for a.e. } ([0,T]) \] subject to two classes of boundary conditions
(1) \(a_1x(0)+b_1D_C^{\gamma }x(0)=c_1\), \(a_2x(T)+b_2D_C^{\gamma }x(T)=c_2\);
(2) \(a_1x(0)+b_1x(T)=c_1\), \(a_2D_C^{\gamma }x(0)+b_2D_C^{\gamma }x(T)=c_2\).
\(F:[0,T]\times {\mathbb R}\times {\mathbb R}\to {\mathcal P}({\mathbb R})\) is a set-valued map, \(D_C^{\alpha }\) denotes the Caputo fractional derivative of order \(\alpha \), \(\alpha \in (1,2]\), \(\beta \in (0,1]\), \(\gamma \in (0,1)\) and \(a_i,b_i,c_i\in {\mathbb R}\), \(i=1,2\).
Three existence results are obtained for the problems considered. The first result relies on the nonlinear alternative of Leray-Schauder type, the second result essentially uses the Bressan-Colombo selection theorem for lower semicontinuous set-valued maps with decomposable values and the third result is based on the Covitz-Nadler contraction principle for set-valued maps.

MSC:

34A08 Fractional ordinary differential equations
34A60 Ordinary differential inclusions
47N20 Applications of operator theory to differential and integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Baleanu, J. A. T. Machado, and A. C. J. Luo, Fractional Dynamics and Control, Springer, New York, NY, USA, 2012. · Zbl 1231.93003
[2] J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Eds., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, The Netherlands, 2007. · Zbl 1116.00014
[3] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific, 2009. · Zbl 1188.37002
[4] B. Ahmad and J. J. Nieto, “Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative,” Fractional Calculus and Applied Analysis, vol. 15, no. 3, pp. 451-462, 2012. · Zbl 1281.34005 · doi:10.2478/s13540-012-0032-1
[5] B. Ahmad and J. J. Nieto, “Anti-periodic fractional boundary value problems,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1150-1156, 2011. · Zbl 1228.34009 · doi:10.1016/j.camwa.2011.03.001
[6] B. Ahmad and S. K. Ntouyas, “A note on fractional differential equations with fractional separated boundary conditions,” Abstract and Applied Analysis, vol. 2012, Article ID 818703, 11 pages, 2012. · Zbl 1244.34004 · doi:10.1155/2012/818703
[7] Z. Bai, “On positive solutions of a nonlocal fractional boundary value problem,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 2, pp. 916-924, 2010. · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[8] D. B\ualeanu, O. G. Mustafa, and R. P. Agarwal, “An existence result for a superlinear fractional differential equation,” Applied Mathematics Letters, vol. 23, no. 9, pp. 1129-1132, 2010. · Zbl 1200.34004 · doi:10.1016/j.aml.2010.04.049
[9] A. Chen and Y. Chen, “Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations,” Differential Equations and Dynamical Systems, vol. 19, no. 3, pp. 237-252, 2011. · Zbl 1219.34007 · doi:10.1155/2011/915689
[10] A. Chen and Y. Tian, “Existence of three positive solutions to three-point boundary value problem of nonlinear fractional differential equation,” Differential Equations and Dynamical Systems, vol. 18, no. 3, pp. 327-339, 2010. · Zbl 1218.34005 · doi:10.1007/s12591-010-0063-1
[11] R. A. Khan, M. U. Rehman, and J. Henderson, “Existence and uniqueness of solutions for nonlinear fractional dierential equations with integral boundary conditions,” Fractional Differential Calculus, vol. 1, no. 1, pp. 29-43, 2011.
[12] Z. Liu and J. Sun, “Nonlinear boundary value problems of fractional differential systems,” Computers & Mathematics with Applications, vol. 64, no. 4, pp. 463-475, 2012. · Zbl 1252.34006 · doi:10.1016/j.camwa.2011.12.020
[13] C. F. Li, X. N. Luo, and Y. Zhou, “Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1363-1375, 2010. · Zbl 1189.34014 · doi:10.1016/j.camwa.2009.06.029
[14] X. Su, “Boundary value problem for a coupled system of nonlinear fractional differential equations,” Applied Mathematics Letters, vol. 22, no. 1, pp. 64-69, 2009. · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[15] F. Wang, “Anti-periodic fractional boundary value problems for non-linear dierential equations of fractional order,” Advances in Difference Equations, vol. 2012, article 116, 2012. · Zbl 1350.34015 · doi:10.1186/1687-1847-2012-116
[16] G. Wang, B. Ahmad, and L. Zhang, “Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order,” Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 3, pp. 792-804, 2011. · Zbl 1214.34009 · doi:10.1016/j.na.2010.09.030
[17] J. Wang, L. Lv, and Y. Zhou, “Boundary value problems for fractional differential equations involving Caputo derivative in Banach spaces,” Journal of Applied Mathematics and Computing, vol. 38, no. 1-2, pp. 209-224, 2012. · Zbl 1296.34032 · doi:10.1007/s12190-011-0474-3
[18] Y. Zhou and F. Jiao, “Nonlocal Cauchy problem for fractional evolution equations,” Nonlinear Analysis. Real World Applications, vol. 11, no. 5, pp. 4465-4475, 2010. · Zbl 1260.34017 · doi:10.1016/j.nonrwa.2010.05.029
[19] L. Zhang, G. Wang, and G. Song, “Existence of solutions for nonlinear impulsive fractional dierential equations of order \alpha \in (2,3] with nonlocal boundary conditions,” Abstract and Applied Analysis, vol. 2012, Article ID 717235, 26 pages, 2012. · Zbl 1246.34014 · doi:10.1155/2012/717235
[20] S. Zhang, “Positive solutions for boundary-value problems of nonlinear fractional differential equations,” Electronic Journal of Differential Equations, vol. 36, pp. 1-12, 2006. · Zbl 1096.34016
[21] B. Ahmad, J. J. Nieto, and J. Pimentel, “Some boundary value problems of fractional differential equations and inclusions,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1238-1250, 2011. · Zbl 1228.34011 · doi:10.1016/j.camwa.2011.02.035
[22] B. Ahmad and S. K. Ntouyas, “Fractional differential inclusions with fractional separated boundary conditions,” Fractional Calculus and Applied Analysis, vol. 15, no. 3, pp. 362-382, 2012. · Zbl 1279.34003 · doi:10.2478/s13540-012-0027-y
[23] M. Benchohra, S. Djebali, and S. Hamani, “Boundary-value problems of differential inclusions with Riemann-Liouville fractional derivative,” Nonlinear Oscillations, vol. 14, no. 1, pp. 6-20, 2011. · Zbl 1334.34046
[24] A. Cernea, “On a multi point boundary value problem for a fractional order dierential inclusion,” Arab Journal of Mathematical Sciences. In press. · Zbl 1262.34006 · doi:10.1016/j.ajmsc.2012.07.001
[25] A. Cernea, “A note on the existence of solutions for some boundary value problems of fractional differential inclusions,” Fractional Calculus and Applied Analysis, vol. 15, no. 2, pp. 183-194, 2012. · Zbl 1281.34019 · doi:10.2478/s13540-012-0013-4
[26] Y.-K. Chang and J. J. Nieto, “Some new existence results for fractional differential inclusions with boundary conditions,” Mathematical and Computer Modelling, vol. 49, no. 3-4, pp. 605-609, 2009. · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[27] J. Wang and Y. Zhou, “Existence and controllability results for fractional semilinear differential inclusions,” Nonlinear Analysis. Real World Applications, vol. 12, no. 6, pp. 3642-3653, 2011. · Zbl 1231.34108 · doi:10.1016/j.nonrwa.2011.06.021
[28] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, vol. 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. · Zbl 0887.47001
[29] A. Lasota and Z. Opial, “An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations,” Bulletin de l’Académie Polonaise des Sciences, vol. 13, pp. 781-786, 1965. · Zbl 0151.10703
[30] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[31] A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer, New York, NY, USA, 2003. · Zbl 1025.47002
[32] H. Covitz and S. B. Nadler Jr., “Multi-valued contraction mappings in generalized metric spaces,” Israel Journal of Mathematics, vol. 8, pp. 5-11, 1970. · Zbl 0192.59802 · doi:10.1007/BF02771543
[33] A. A. Tolstonogov, “A theorem of Bogolyubov with constraints generated by a second-order evolutionary control system,” Izvestiya: Mathematics, vol. 67, no. 5, 2003. · Zbl 1062.49013 · doi:10.1070/IM2003v067n05ABEH000456
[34] A. Bressan and G. Colombo, “Extensions and selections of maps with decomposable values,” Studia Mathematica, vol. 90, no. 1, pp. 69-86, 1988. · Zbl 0677.54013
[35] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, vol. 580 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1977. · Zbl 0346.46038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.