×

Rational points near manifolds and metric Diophantine approximation. (English) Zbl 1264.11063

In this important paper, spectacular progress in the metric theory of Diophantine approximation on manifolds is made. The author proves that an analytic and non-degenerate sub-manifold \({\mathcal M} \subseteq {\mathbb R}^n\) is of Khintchine type for divergence. This means that if \(\psi : {\mathbb N} \rightarrow {\mathbb R}_+\) is a decreasing function with \(\sum \psi(k)^n = \infty\), then for almost every point \({\mathbf x} \in {\mathcal M}\) with respect to the natural measure on \({\mathcal M}\), the inequality \[ |q{\mathbf x}-{\mathbf p}| < \psi(q) \] has infinitely many solutions \(q \in {\mathbb Z}, {\mathbf p} \in {\mathbb Z}^n\). Previously, this result was known only for \(C^{(3)}\) planar curves. At the cost of imposing analyticity, this is extended to all non-degenerate sub-manifolds of \({\mathbb R}^n\).
The key difficulty in establishing results as the above lie in calculating the contribution from rational points with the same denominator nearby the manifold in question. In particular, one needs to obtain a good lower bound for the number of rational points within a specified distance of \({\mathcal M}\), with bounded denominator \(q\) and which all lie in some specified set \(B\). The derivation of such a bound constitutes the bulk of the paper, which consists of a tour de force of calculations involving geometric and probabilistic ideas. Despite the technical nature of the problems involved, the paper remains very readable and self-contained.
In addition to the statement on manifolds being of Khintchine type for divergence, the author also derives the Hausdorff measure of some exceptional sets as well as even stronger results in the case of curves.
The paper is concluded with some conjectures. One states that analytic and non-degenerate manifolds should be of Khintchine type for convergence, i.e., if the series \(\sum \psi(k)^n\) converges, the set of points for which the above inequality is satisfied infinitely often is of measure \(0\). Another conjecture gives the corresponding Hausdorff measure statement. Both of these conjectures would involve obtaining an upper bound on the number of rational points nearby the manifold, which would complement the lower bound obtained in this paper.

MSC:

11J83 Metric theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D. Badziahin and J. Levesley, ”A note on simultaneous and multiplicative Diophantine approximation on planar curves,” Glasg. Math. J., vol. 49, iss. 2, pp. 367-375, 2007. · Zbl 1168.11029 · doi:10.1017/S0017089507003722
[2] R. C. Baker, ”Metric Diophantine approximation on manifolds,” J. London Math. Soc., vol. 14, iss. 1, pp. 43-48, 1976. · Zbl 0338.10058 · doi:10.1112/jlms/s2-14.1.43
[3] V. V. Beresnevich, ”A Groshev type theorem for convergence on manifolds,” Acta Math. Hungar., vol. 94, iss. 1-2, pp. 99-130, 2002. · Zbl 0997.11053 · doi:10.1023/A:1015662722298
[4] V. V. Beresnevich and V. Bernik, ”On a metrical theorem of W. Schmidt,” Acta Arith., vol. 75, iss. 3, pp. 219-233, 1996. · Zbl 0858.11042
[5] V. V. Beresnevich, V. I. Bernik, and M. M. Dodson, ”On the Hausdorff dimension of sets of well-approximable points on nondegenerate curves,” Dokl. Nats. Akad. Nauk Belarusi, vol. 46, iss. 6, pp. 18-20, 124, 2002. · Zbl 1177.11066
[6] V. V. Beresnevich, V. I. Bernik, D. Y. Kleinbock, and G. A. Margulis, ”Metric Diophantine approximation: the Khintchine-Groshev theorem for nondegenerate manifolds,” Mosc. Math. J., vol. 2, iss. 2, pp. 203-225, 2002. · Zbl 1013.11039
[7] V. V. Beresnevich, D. Dickinson, and S. Velani, ”Measure theoretic laws for lim sup sets,” Mem. Amer. Math. Soc., vol. 179, iss. 846, p. x, 2006. · Zbl 1129.11031
[8] V. V. Beresnevich, D. Dickinson, and S. Velani, ”Diophantine approximation on planar curves and the distribution of rational points,” Ann. of Math., vol. 166, iss. 2, pp. 367-426, 2007. · Zbl 1137.11048 · doi:10.4007/annals.2007.166.367
[9] V. V. Beresnevich, R. C. Vaughan, and S. L. Velani, ”Inhomogeneous Diophantine approximation on planar curves,” Math. Ann., vol. 349, iss. 4, pp. 929-942, 2011. · Zbl 1221.11158 · doi:10.1007/s00208-010-0548-9
[10] V. V. Beresnevich and S. L. Velani, ”A note on simultaneous Diophantine approximation on planar curves,” Math. Ann., vol. 337, iss. 4, pp. 769-796, 2007. · Zbl 1204.11104 · doi:10.1007/s00208-006-0055-1
[11] V. V. Beresnevich and S. L. Velani, ”Ubiquity and a general logarithm law for geodesics,” in Dynamical Systems and Diophantine Approximation, , 2009, vol. 22, pp. 21-36. · Zbl 1230.11089
[12] V. V. Beresnevich and E. Zorin, ”Explicit bounds for rational points near planar curves and metric Diophantine approximation,” Adv. Math., vol. 225, iss. 6, pp. 3064-3087, 2010. · Zbl 1207.11076 · doi:10.1016/j.aim.2010.05.021
[13] V. I. Bernik, ”Asymptotic behavior of the number of solutions of certain systems of inequalities in the theory of Diophantine approximations of dependent variables,” VescīAkad. Navuk BSSR Ser. Fīz.-Mat. Navuk, iss. 1, pp. 10-17, 134, 1973. · Zbl 0269.10016
[14] V. I. Bernik, ”An analogue of Hin\vcin’s theorem in the metric theory of Diophantine approximations of dependent variables. I,” VescīAkad. Navuk BSSR Ser. Fīz.-Mat. Navuk, iss. 6, pp. 44-49, 141, 1977. · Zbl 0394.10017
[15] V. I. Bernik, ”The exact order of approximation of almost all points of a parabola,” Mat. Zametki, vol. 26, iss. 5, pp. 657-665, 813, 1979. · Zbl 0415.10047
[16] V. I. Bernik, ”Application of the Hausdorff dimension in the theory of Diophantine approximations,” Acta Arith., vol. 42, iss. 3, pp. 219-253, 1983. · Zbl 0655.10051
[17] V. I. Bernik, ”The Khinchin transference principle and lower bounds for the number of rational points near smooth manifolds,” Dokl. Nats. Akad. Nauk Belarusi, vol. 47, iss. 2, pp. 26-28, 2003. · Zbl 1204.11116
[18] V. I. Bernik and M. M. Dodson, Metric Diophantine Approximation on Manifolds, Cambridge: Cambridge Univ. Press, 1999, vol. 137. · Zbl 0933.11040 · doi:10.1017/CBO9780511565991
[19] V. I. Bernik, D. Kleinbock, and G. A. Margulis, ”Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions,” Internat. Math. Res. Notices, iss. 9, pp. 453-486, 2001. · Zbl 0986.11053 · doi:10.1155/S1073792801000241
[20] M. Bôcher, ”The theory of linear dependence,” Ann. of Math., vol. 2, iss. 1-4, pp. 81-96, 1900/01. · JFM 32.0106.02 · doi:10.2307/2007186
[21] N. Budarina and D. Dickinson, ”Simultaneous Diophantine approximation on surfaces defined by polynomial expressions \(x^d_1+\dots+ x^d_m\),” in Analytic and Probabilistic Methods in Number Theory/Analiziniai ir Tikimybiniai Metodai Skai\vci\polhk u Teorijoje, Vilnius: TEV, 2007, pp. 17-23. · Zbl 1157.11032
[22] H. Dickinson and M. M. Dodson, ”Extremal manifolds and Hausdorff dimension,” Duke Math. J., vol. 101, iss. 2, pp. 271-281, 2000. · Zbl 0973.11073 · doi:10.1215/S0012-7094-00-10126-3
[23] H. Dickinson and M. M. Dodson, ”Simultaneous Diophantine approximation on the circle and Hausdorff dimension,” Math. Proc. Cambridge Philos. Soc., vol. 130, iss. 3, pp. 515-522, 2001. · Zbl 0992.11046 · doi:10.1017/S0305004101004984
[24] M. M. Dodson, B. P. Rynne, and J. A. G. Vickers, ”Metric Diophantine approximation and Hausdorff dimension on manifolds,” Math. Proc. Cambridge Philos. Soc., vol. 105, iss. 3, pp. 547-558, 1989. · Zbl 0677.10040 · doi:10.1017/S0305004100077926
[25] M. M. Dodson, B. P. Rynne, and J. A. G. Vickers, ”Khintchine-type theorems on manifolds,” Acta Arith., vol. 57, iss. 2, pp. 115-130, 1991. · Zbl 0736.11040
[26] M. M. Dodson, B. P. Rynne, and J. A. G. Vickers, ”Simultaneous Diophantine approximation and asymptotic formulae on manifolds,” J. Number Theory, vol. 58, iss. 2, pp. 298-316, 1996. · Zbl 0858.11041 · doi:10.1006/jnth.1996.0079
[27] C. Dructu, ”Diophantine approximation on rational quadrics,” Math. Ann., vol. 333, iss. 2, pp. 405-469, 2005. · Zbl 1082.11047 · doi:10.1007/s00208-005-0683-x
[28] N. D. Elkies, ”Rational points near curves and small nonzero \(| x^3-y^2| \) via lattice reduction,” in Algorithmic Number Theory, New York: Springer-Verlag, 2000, vol. 1838, pp. 33-63. · Zbl 0991.11072 · doi:10.1007/10722028_2
[29] A. Ghosh, A. Gorodnik, and A. Nevo, Diophantine approximation and automorphic spectrum. · Zbl 1370.11077
[30] A. Gorodnik and N. A. Shah, ”Khinchin’s theorem for approximation by integral points on quadratic varieties,” Math. Ann., vol. 350, iss. 2, pp. 357-380, 2011. · Zbl 1260.11049 · doi:10.1007/s00208-010-0561-z
[31] G. Harman, ”Simultaneous Diophantine approximation and asymptotic formulae on manifolds,” Acta Arith., vol. 108, iss. 4, pp. 379-389, 2003. · Zbl 1076.11047 · doi:10.4064/aa108-4-7
[32] M. N. Huxley, ”The rational points close to a curve,” Ann. Scuola Norm. Sup. Pisa Cl. Sci., vol. 21, iss. 3, pp. 357-375, 1994. · Zbl 0827.11046
[33] M. N. Huxley, Area, lattice points, and exponential sums, New York: The Clarendon Press Oxford University Press, 1996, vol. 13. · Zbl 0861.11002
[34] V. Jarn’ik, ”Über die simultanen diophantischen Approximationen,” Math. Z., vol. 33, iss. 1, pp. 505-543, 1931. · Zbl 0001.32403 · doi:10.1007/BF01174368
[35] A. Khintchine, ”Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen,” Math. Ann., vol. 92, iss. 1-2, pp. 115-125, 1924. · JFM 50.0125.01 · doi:10.1007/BF01448437
[36] A. Khintchine, ”Zwei Bemerkungen zu einer Arbeit des Herrn Perron,” Math. Z., vol. 22, iss. 1, pp. 274-284, 1925. · JFM 51.0157.02 · doi:10.1007/BF01479606
[37] A. Khintchine, ”Zur metrischen Theorie der diophantischen Approximationen,” Math. Z., vol. 24, iss. 1, pp. 706-714, 1926. · JFM 52.0183.02 · doi:10.1007/BF01216806
[38] D. Kleinbock, ”Extremal subspaces and their submanifolds,” Geom. Funct. Anal., vol. 13, iss. 2, pp. 437-466, 2003. · Zbl 1113.11044 · doi:10.1007/s000390300011
[39] D. Kleinbock, ”Baker-Sprind\vzuk conjectures for complex analytic manifolds,” in Algebraic Groups and Arithmetic, Mumbai: Tata Inst. Fund. Res., 2004, pp. 539-553. · Zbl 1103.11020
[40] D. Kleinbock, E. Lindenstrauss, and B. Weiss, ”On fractal measures and Diophantine approximation,” Selecta Math., vol. 10, iss. 4, pp. 479-523, 2004. · Zbl 1130.11039 · doi:10.1007/s00029-004-0378-2
[41] D. Kleinbock and G. A. Margulis, ”Flows on homogeneous spaces and Diophantine approximation on manifolds,” Ann. of Math., vol. 148, iss. 1, pp. 339-360, 1998. · Zbl 0922.11061 · doi:10.2307/120997
[42] D. Kleinbock and G. Tomanov, ”Flows on \(S\)-arithmetic homogeneous spaces and applications to metric Diophantine approximation,” Comment. Math. Helv., vol. 82, iss. 3, pp. 519-581, 2007. · Zbl 1135.11037 · doi:10.4171/CMH/102
[43] J. F. Koksma, Diophantische Approximationen, Berlin: Julius Springer, 1936, vol. 4. · Zbl 0012.39602
[44] K. Mahler, ”Über das Maßder Menge aller \(S\)-Zahlen,” Math. Ann., vol. 106, iss. 1, pp. 131-139, 1932. · Zbl 0003.24602 · doi:10.1007/BF01455882
[45] V. I. Mashanov, ”On a problem of Baker in the metric theory of Diophantine approximations,” VestsīAkad. Navuk BSSR Ser. Fīz.-Mat. Navuk, vol. 1987 , no. 1, pp. 34-38, 125. · Zbl 0628.10054
[46] B. Mazur, ”Perturbations, deformations, and variations (and “near-misses”) in geometry, physics, and number theory,” Bull. Amer. Math. Soc., vol. 41, iss. 3, pp. 307-336, 2004. · Zbl 1057.11033 · doi:10.1090/S0273-0979-04-01024-9
[47] J. V. Melcprimenivcuk, ”Diophantine approximations on the circle and Hausdorff dimension,” Mat. Zametki, vol. 26, iss. 3, pp. 347-354, 492, 1979. · Zbl 0432.10027 · doi:10.1007/BF01138671
[48] A. S. Pjartli, ”Diophantine approximations of submanifolds of a Euclidean space,” Funkcional. Anal. i Prilo\vzen., vol. 3, iss. 4, pp. 59-62, 1969.
[49] W. M. Schmidt, ”Metrische Sätze über simultane Approximation abhängiger Grössen,” Monatsh. Math., vol. 68, pp. 154-166, 1964. · Zbl 0119.28105 · doi:10.1007/BF01307118
[50] W. M. Schmidt, Diophantine Approximation, New York: Springer-Verlag, 1980, vol. 785. · Zbl 0421.10019
[51] V. G. Sprindvzuk, Mahler’s Problem in Metric Number Theory, Providence, R.I.: Amer. Math. Soc., 1969, vol. 25. · Zbl 0482.10047
[52] V. G. Sprindvzuk, Metric Theory of Diophantine Approximations, New York: John Wiley & Sons, 1979. · Zbl 0463.10020 · doi:10.1070/RM1980v035n04ABEH001861
[53] V. G. Sprindvzuk, ”Achievements and problems of the theory of Diophantine approximations,” Uspekhi Mat. Nauk, vol. 35, iss. 4(214), pp. 3-68, 248, 1980. · Zbl 0463.10020 · doi:10.1070/RM1980v035n04ABEH001861
[54] R. C. Vaughan and S. Velani, ”Diophantine approximation on planar curves: the convergence theory,” Invent. Math., vol. 166, iss. 1, pp. 103-124, 2006. · Zbl 1185.11047 · doi:10.1007/s00222-006-0509-9
[55] H. Weyl and J. Weyl, ”Meromorphic curves,” Ann. of Math., vol. 39, iss. 3, pp. 516-538, 1938. · Zbl 0019.17202 · doi:10.2307/1968632
[56] H. Whitney, Geometric Integration Theory, Princeton, NJ: Princeton Univ. Press, 1957. · Zbl 0083.28204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.