×

Modified Chebyshev-Halley type method and its variants for computing multiple roots. (English) Zbl 1263.65046

Two families of third order methods for finding multiple roots of nonlinear equations are presented in this paper. One family is based on the Chebyshev-Halley scheme (for simple roots) and includes Halley, Chebyshev and Chun-Neta methods as particular cases for multiple roots. The second family is based on the variant of Chebyshev-Halley scheme and includes the methods of Dong, Homeier, Neta and Li et al. as particular cases. The efficacy is tested on a number of relevant numerical problems. It is observed that the new methods of the families are equally competitive with the well known special cases of the families.

MSC:

65H05 Numerical computation of solutions to single equations

Software:

Mathematica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chapra, S.C., Canale, R.P.: Numerical Methods for Engineers. McGraw-Hill Book Company, New York (1988)
[2] Chun, C., Neta, B.: A third order modification of Newton’s method for multiple roots. Appl. Math. Comput. 211, 474–479 (2009) · Zbl 1162.65342 · doi:10.1016/j.amc.2009.01.087
[3] Dong, C.: A basic theorem of constructing an iterative formula of the higher order for computing multiple roots of an equation. Math. Numer. Sinica 11, 445–450 (1982) · Zbl 0511.65030
[4] Dong, C.: A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math. 21, 363–367 (1987) · Zbl 0656.65050 · doi:10.1080/00207168708803576
[5] Gautschi, W.: Numerical Analysis: An Introduction. Birkhäuser, Boston, MA (1997) · Zbl 0877.65001
[6] Gutiérrez, J.M., Hernández, M.A.: A family of Chebyshev-Halley type methods in Banach spaces. Bull. Aust. Math. Soc. 55, 113–130 (1997) · Zbl 0893.47043 · doi:10.1017/S0004972700030586
[7] Hansen, E., Patrick, M.: A family of root finding methods. Numer. Math. 27, 257–269 (1977) · Zbl 0361.65041 · doi:10.1007/BF01396176
[8] Homeier, H.H.H.: On Newton-type methods for multiple roots with cubic convergence. J. Comput. Appl. Math. 231, 249–254 (2009) · Zbl 1168.65024 · doi:10.1016/j.cam.2009.02.006
[9] Li, S., Li, H., Cheng, L.: Second-derivative free variants of Halley’s method for multiple roots. Appl. Math. Comput. 215, 2192–2198 (2009) · Zbl 1181.65070 · doi:10.1016/j.amc.2009.08.010
[10] Li, S., Cheng, L., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010) · Zbl 1189.65093 · doi:10.1016/j.camwa.2009.08.066
[11] Neta, B.: New third order nonlinear solvers for multiple roots. Appl. Math. Comput. 202, 162–170 (2008) · Zbl 1151.65041 · doi:10.1016/j.amc.2008.01.031
[12] Neta, B.: Extension of Murakami’s high-order nonlinear solver to multiple roots. Int. J. Comput. Math. 87, 1023–1031 (2010) · Zbl 1192.65052 · doi:10.1080/00207160802272263
[13] Neta, B., Johnson, A.N.: High order nonlinear solver for multiple roots. Comput. Math. Appl. 55, 2012–2017 (2008) · Zbl 1142.65044 · doi:10.1016/j.camwa.2007.09.001
[14] Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) · Zbl 0241.65046
[15] Osada, N.: An optimal multiple root-finding method of order three. J. Comput. Appl. Math. 51, 131–133 (1994) · Zbl 0814.65045 · doi:10.1016/0377-0427(94)00044-1
[16] Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870) · JFM 02.0042.02 · doi:10.1007/BF01444024
[17] Sharma, J.R., Sharma, R.: New third and fourth order nonlinear solvers for computing multiple roots. Appl. Math. Comput. 217, 9756–9764 (2011) · Zbl 1220.65059 · doi:10.1016/j.amc.2011.04.063
[18] Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs, NJ (1964) · Zbl 0121.11204
[19] Victory, H.D., Neta, B.: A higher order method for multiple zeros of nonlinear functions. Int. J. Comput. Math. 12, 329–335 (1983) · Zbl 0499.65026 · doi:10.1080/00207168208803346
[20] Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.