×

Analysis of a two-phase model describing the growth of solid tumors. (English) Zbl 1261.76053

Summary: In this paper we consider a two-phase model describing the growth of avascular solid tumors when taking into account the effects of cell-to-cell adhesion and taxis due to nutrient. The tumor is surrounded by healthy tissue which is the source of nutrient for tumor cells. In a three-dimensional context, we prove that the mathematical formulation corresponds to a well-posed problem, and find radially symmetric steady-state solutions of the problem. They appear in the regime where the rate of cell apoptosis to cell proliferation is less than the far field nutrient concentration. Furthermore, we study the stability properties of those radially symmetric equilibria and find, depending on the biophysical parameters involved in the problem, both stable and unstable regimes for tumor growth.

MSC:

76T99 Multiphase and multicomponent flows
92C50 Medical applications (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stud. Appl. Math. LI pp 317– (1972)
[2] DOI: 10.1016/S0022-5193(76)80054-9 · doi:10.1016/S0022-5193(76)80054-9
[3] Math. Models Methods Appl. Sci. 9 pp 601– (2001)
[4] Trans. Amer. Math. Soc. 353 pp 1587– (2000)
[5] DOI: 10.1007/s002850050149 · Zbl 0944.92018 · doi:10.1007/s002850050149
[6] DOI: 10.1137/S0036141095291919 · Zbl 0888.35142 · doi:10.1137/S0036141095291919
[7] Adv. Diff. Equ. 2 pp 619– (1997)
[8] DOI: 10.1090/S0002-9947-08-04589-3 · Zbl 1142.47028 · doi:10.1090/S0002-9947-08-04589-3
[9] DOI: 10.1088/0951-7715/25/1/73 · Zbl 1243.35179 · doi:10.1088/0951-7715/25/1/73
[10] DOI: 10.1016/j.jmaa.2007.03.107 · Zbl 1246.35211 · doi:10.1016/j.jmaa.2007.03.107
[11] Z. Anal. Anwend. 30 pp 193– (2011)
[12] DOI: 10.1007/s00205-008-0158-9 · Zbl 1161.35058 · doi:10.1007/s00205-008-0158-9
[13] Analysis of a Mathematical Model Describing Necrotic Tumor Growth pp 237– (2011)
[14] DOI: 10.1080/03605300701743848 · Zbl 1147.35113 · doi:10.1080/03605300701743848
[15] DOI: 10.3934/dcdsb.2011.15.573 · Zbl 1222.35199 · doi:10.3934/dcdsb.2011.15.573
[16] DOI: 10.1137/060657509 · Zbl 1146.35011 · doi:10.1137/060657509
[17] DOI: 10.1007/s00030-009-0037-6 · Zbl 1193.34036 · doi:10.1007/s00030-009-0037-6
[18] DOI: 10.1007/s10114-004-0483-3 · Zbl 1108.35138 · doi:10.1007/s10114-004-0483-3
[19] DOI: 10.1006/jmaa.2000.7306 · Zbl 0984.35169 · doi:10.1006/jmaa.2000.7306
[20] DOI: 10.1007/s00285-002-0174-6 · Zbl 1023.92013 · doi:10.1007/s00285-002-0174-6
[21] DOI: 10.1007/s00285-008-0215-x · Zbl 1311.92039 · doi:10.1007/s00285-008-0215-x
[22] DOI: 10.1093/imammb/20.4.341 · Zbl 1046.92023 · doi:10.1093/imammb/20.4.341
[23] DOI: 10.1016/0025-5564(94)00117-3 · Zbl 0836.92011 · doi:10.1016/0025-5564(94)00117-3
[24] Analytic Semigroups and Optimal Regularity in Parabolic Problems (1995)
[25] Linear and Quasilinear Elliptic Equations (1968)
[26] DOI: 10.1016/S0362-546X(02)00286-9 · Zbl 1028.35123 · doi:10.1016/S0362-546X(02)00286-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.