×

Sinc-Galerkin method for numerical solution of the Bratu’s problems. (English) Zbl 1259.65126

Summary: A study of the performance of the Galerkin method using sinc basis functions for solving Bratu’s problem is presented. An error analysis of the presented method is given. The method is applied to two test examples. By considering the maximum, absolute errors in the solutions at the sinc grid points are tabulated in tables for different choices of step size. We conclude that the sinc-Galerkin method converges to the exact solution rapidly, with order \(O(\exp{(-c \sqrt{n}}))\) accuracy, where \(c\) is independent of \(n\).

MSC:

65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
34L30 Nonlinear ordinary differential operators
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations

Software:

Sinc-Pack
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Buckmire, R.: Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem. Numer. Methods Partial Differential Equations 20(3), 327–337 (2004) · Zbl 1048.65102
[2] Jacobsen, J., Schmitt, K.: The Liouville-Bratu-Gelfand problem for radial operators. J. Differential Equations 184, 283–298 (2002) · Zbl 1015.34013
[3] Mcgough, J.S.: Numerical continuation and the Gelfand problem. Appl. Math. Comput. 89, 225–239 (1998) · Zbl 0908.65094
[4] Mounim, A.S., de Dormale, B.M.: From the fitting techniques to accurate schemes for the Liouville-Bratu-Gelfand problem. Numer. Methods Partial Differential Equations 22(4), 761–775 (2006) · Zbl 1099.65098
[5] Boyd, J.P.: Chebyshev polynomial expantions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation. Appl. Math. Comput. 142, 189–200 (2003) · Zbl 1025.65042
[6] Frank-Kamenetski, D.A.: Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press, Princeton, NJ (1995)
[7] Caglar, H., Caglar, N., Özer, M., Anagnostopoulos, A.N.: B-spline method for solving Bratu’ problem. J. Comput. Math. 87(8), 1885–1891 (2010) · Zbl 1197.65090
[8] Deeba, E., Khuri, S.A., Xie, S.: An algorithm for solving boundary value problems. J. Comput. Phys. 159, 125–138 (2000) · Zbl 0959.65091
[9] Khuri, S.A.: A new approach to Bratu’s problem. Appl. Math. Comput. 147, 131–136 (2004) · Zbl 1032.65084
[10] Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166, 652–663 (2005) · Zbl 1073.65068
[11] Syam, M.I., Hamdan, A.: An efficient method for solving Bratu equations. Appl. Math. Comput. 176, 704–713 (2006) · Zbl 1093.65108
[12] Li, S., Liao, S.J.: An analytic approach to solve multiple solutions of a strongly nonlinear problem. Appl. Math. Comput. 169, 854–865 (2005) · Zbl 1151.35354
[13] Aregbesola, Y.A.S.: Numerical solution of Bratu problem using the method of weighted residual. Electron. J. South Afr. Math. Sci. 3(1), 1–7 (2003)
[14] Hassan, I.H.A.H., Erturk, V.S.: Applying differential transformation method to the one-dimensional planar Bratu problem. Int. J. Contemp. Math. Sci. 2, 1493–1504 (2007) · Zbl 1152.34008
[15] He, J.H.: Some asymptotic methods for strongly nonlinear equations. Internat. J. Modern Phys. B 20(10), 1141–1199 (2006) · Zbl 1102.34039
[16] He, J.H.: Variational approach to the Bratu’s problem. J. Phys.: Conf. Ser. 96, 012087 (2008)
[17] Mohsen, A., Sedeek, L.F., Mohamed, S.A.: New smoother to enhance multigridbased methods for Bratu problem. Appl. Math. Comput. 204, 325–339 (2008) · Zbl 1154.65344
[18] Batiha, B.: Numerical solution of Bratu-type equations by the variational iteration method. Hacet. J. Math. Stat. 39, 23–29 (2010) · Zbl 1196.65120
[19] Stenger, F.: A Sinc-Galerkin method of solution of boundary value problems. J. Math. Comput. 33, 85–109 (1979) · Zbl 0402.65053
[20] Stenger, F.: Handbook of Sinc Numerical Methods. CRC Press (2010) · Zbl 1208.65143
[21] Lund, J.: Symmetrization of the Sinc-Galerkin method for boundary value problems. J. Math. Comput. 47, 571–588 (1986) · Zbl 0629.65085
[22] El-Gamel, M., Zayed, A.I.: Sinc-Galerkin method for solving nonlinear boundary value problems. J. Comput. Math. Appl. 48, 1285–1298 (2004) · Zbl 1072.65111
[23] Mohsen, A., El-Gamel, M.: On the Galerkin and collocation methods for two-point boundary value problems using sinc bases. J. Comput. Math. Appl. 56, 930–941 (2008) · Zbl 1155.65365
[24] Stenger, F.: Numerical Method Based on Sinc and Analytic Functions. Springer, New York (1993) · Zbl 0803.65141
[25] Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia, PA (1992) · Zbl 0753.65081
[26] Stenger, F.: Summary of sinc numerical methods. J. Comput. Appl. Math. 121, 379–42 (2000) · Zbl 0964.65010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.