×

A measure space approach to optimal source placement. (English) Zbl 1258.49041

Summary: The problem of optimal placement of point sources is formulated as a distributed optimal control problem with sparsity constraints. For practical relevance, partial observations as well as partial and non-negative controls need to be considered. Although well-posedness of this problem requires a non-reflexive Banach space setting, a primal-predual formulation of the optimality system can be approximated well by a family of semi-smooth equations, which can be solved by a superlinearly convergent semi-smooth Newton method. Numerical examples indicate the feasibility for optimal light source placement problems in diffusive photochemotherapy.

MSC:

49M15 Newton-type methods
49N15 Duality theory (optimization)

Software:

DOLFIN
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. Philadelphia, SIAM (2006) · Zbl 1095.49001
[2] Baas, P., Murrer, L., Zoetmulder, F., Stewart, F., Ris, H., van Zandwijk, N., Peterse, J., Rutgers, E.: Photodynamic therapy as adjuvant therapy in surgically treated pleural malignancies. Br. J. Cancer 76, 819–826 (1997) · doi:10.1038/bjc.1997.468
[3] Bredies, K., Pikkarainen, H.: Inverse problems in spaces of measures. Tech. Rep. 2010–037, Mobis (2010). http://math.uni-graz.at/mobis/publications/SFB-Report-2010-037.pdf · Zbl 1266.65083
[4] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010) · Zbl 1220.46002
[5] Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with L 1 cost functional (2011, submitted). http://www.tu-chemnitz.de/mathematik/part_dgl/publications/Casas_Herzog_Wachsmuth_Optimality_Conditions_and_Error_Analysis_of_Semilinear_Elliptic_Control_Problems_with_L1_Cost_Functional.pdf · Zbl 1278.49026
[6] Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM Control Optim. Calc. Var. 17(1), 243–266 (2011). doi: 10.1051/cocv/2010003 · Zbl 1213.49041 · doi:10.1051/cocv/2010003
[7] DiBenedetto, E.: Real Analysis. Birkhäuser, Boston (2002) · Zbl 1012.26001
[8] Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Philadelphia, SIAM (1999) · Zbl 0939.49002
[9] Elstrodt, J.: Maß- und Integrationstheorie, 5 edn. Springer, Berlin (2005) · Zbl 1078.28001
[10] Gallouet, T., Monier, A.: On the regularity of solutions to elliptic equations. Rend. Mat. Appl. 19(4), 471–488 (2000) (1999) · Zbl 0961.35036
[11] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition · Zbl 1042.35002
[12] Hintermüller, M., Kunisch, K.: Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64(4), 1311–1333 (2004) (electronic) · Zbl 1055.94504 · doi:10.1137/S0036139903422784
[13] Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advances in Design and Control, vol. 15. SIAM, Philadelphia (2008) · Zbl 1156.49002
[14] Logg, A., Wells, G.N.: DOLFIN: Automated finite element computing. ACM Trans. Math. Softw. 37(2), 20 (2010). doi: http://doi.acm.org/10.1145/1731022.1731030 · Zbl 1364.65254 · doi:10.1145/1731022.1731030
[15] Meyer, C., Panizzi, L., Schiela, A.: Uniqueness criteria for the adjoint equation in state-constrained elliptic optimal control. Numer. Funct. Anal. Optim. 32(9), 983–1007 (2011) · Zbl 1230.35041 · doi:10.1080/01630563.2011.587074
[16] Stadler, G.: Elliptic optimal control problems with L 1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009). doi: 10.1007/s10589-007-9150-9 · Zbl 1185.49031 · doi:10.1007/s10589-007-9150-9
[17] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15(1), 189–258 (1965) · Zbl 0151.15401 · doi:10.5802/aif.204
[18] Troianiello, G.M.: Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics. Plenum Press, New York (1987) · Zbl 0655.35002
[19] Wachsmuth, D., Wachsmuth, G.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var. (2010). doi: 10.1051/cocv/2010027 · Zbl 1228.49032
[20] Wachsmuth, D., Wachsmuth, G.: On the regularization of optimization problems with inequality constraints. Tech. Rep. 2011-1, RICAM Report (2011). http://www.ricam.oeaw.ac.at/publications/reports/11/rep11-01.pdf · Zbl 1228.49032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.