×

The explicit nonlinear wave solutions and their bifurcations of the generalized Camassa-Holm equation. (English) Zbl 1258.35050

Summary: We study explicit nonlinear wave solutions and their bifurcations of the generalized Camassa-Holm equation \[ u_t+2ku_x-u_{xxt}+3u^2u_x=2u_xu_{xx}+uu_{xxx}. \] Not only are the precise expressions of the explicit nonlinear wave solutions obtained, but some interesting bifurcation phenomena are revealed.
Firstly, it is verified that \(k = 3/8\) is a bifurcation parametric value for several types of explicit nonlinear wave solutions.
When \(k < 3/8\), there are five types of explicit nonlinear wave solutions, which are
(i) hyperbolic peakon wave solution,
(ii) fractional peakon wave solution,
(iii) fractional singular wave solution,
(iv) hyperbolic singular wave solution,
(v) hyperbolic smooth solitary wave solution.
When \(k = 3/8\), there are two types of explicit nonlinear wave solutions, which are fractional peakon wave solution and fractional singular wave solution.
When \(k > 3/8\), there is not any type of explicit nonlinear wave solutions.
Secondly, it is shown that there are some bifurcation wave speed values such that the peakon wave and the anti-peakon wave appear alternately.
Thirdly, it is displayed that there are other bifurcation wave speed values such that the hyperbolic peakon wave solution becomes the fractional peakon wave solution, and the hyperbolic singular wave solution becomes the fractional singular wave solution.

MSC:

35C08 Soliton solutions
35C07 Traveling wave solutions
35K55 Nonlinear parabolic equations
34A05 Explicit solutions, first integrals of ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.chaos.2007.10.034 · Zbl 1139.76013 · doi:10.1016/j.chaos.2007.10.034
[2] DOI: 10.1103/PhysRevLett.71.1661 · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[3] DOI: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[4] DOI: 10.1016/S0167-2789(01)00298-6 · Zbl 0984.35139 · doi:10.1016/S0167-2789(01)00298-6
[5] DOI: 10.1088/0266-5611/22/6/017 · Zbl 1105.37044 · doi:10.1088/0266-5611/22/6/017
[6] DOI: 10.1098/rsta.2007.2001 · Zbl 1152.76327 · doi:10.1098/rsta.2007.2001
[7] DOI: 10.1016/j.amc.2008.08.043 · Zbl 1163.35472 · doi:10.1016/j.amc.2008.08.043
[8] DOI: 10.1080/03605300802501715 · Zbl 1156.76014 · doi:10.1080/03605300802501715
[9] Holden H., Discr. Conti. Dyn. Syst. 24 pp 1047–
[10] DOI: 10.1098/rsta.2007.2007 · Zbl 1152.76322 · doi:10.1098/rsta.2007.2007
[11] DOI: 10.3934/dcds.2004.10.709 · Zbl 1059.35012 · doi:10.3934/dcds.2004.10.709
[12] DOI: 10.1111/j.1467-9590.2006.00350.x · Zbl 1145.37330 · doi:10.1111/j.1467-9590.2006.00350.x
[13] DOI: 10.1016/j.chaos.2004.11.083 · Zbl 1069.35017 · doi:10.1016/j.chaos.2004.11.083
[14] DOI: 10.1142/S0218127401002420 · Zbl 1090.37554 · doi:10.1142/S0218127401002420
[15] DOI: 10.1016/S0960-0779(03)00082-1 · Zbl 1068.35136 · doi:10.1016/S0960-0779(03)00082-1
[16] DOI: 10.1142/S0218127406016045 · Zbl 1192.35152 · doi:10.1142/S0218127406016045
[17] DOI: 10.1016/j.nonrwa.2005.06.005 · Zbl 1106.35065 · doi:10.1016/j.nonrwa.2005.06.005
[18] DOI: 10.1016/j.physleta.2007.01.074 · Zbl 1203.35234 · doi:10.1016/j.physleta.2007.01.074
[19] DOI: 10.1016/j.pnsc.2007.11.004 · doi:10.1016/j.pnsc.2007.11.004
[20] DOI: 10.1142/S0218127409024050 · Zbl 1176.34005 · doi:10.1142/S0218127409024050
[21] DOI: 10.1103/PhysRevE.73.057602 · doi:10.1103/PhysRevE.73.057602
[22] DOI: 10.2991/jnmp.2008.15.3.2 · Zbl 1162.35454 · doi:10.2991/jnmp.2008.15.3.2
[23] DOI: 10.1143/JPSJ.75.124001 · doi:10.1143/JPSJ.75.124001
[24] DOI: 10.1016/S0960-0779(00)00117-X · Zbl 1021.35086 · doi:10.1016/S0960-0779(00)00117-X
[25] DOI: 10.1016/j.chaos.2005.02.021 · Zbl 1072.35579 · doi:10.1016/j.chaos.2005.02.021
[26] Tian L. X., Chaos Solit. Fract. 21 pp 621–
[27] DOI: 10.1016/j.physleta.2008.01.012 · Zbl 1220.37069 · doi:10.1016/j.physleta.2008.01.012
[28] DOI: 10.1016/j.physleta.2005.12.036 · Zbl 1187.35199 · doi:10.1016/j.physleta.2005.12.036
[29] DOI: 10.1016/j.amc.2006.07.092 · Zbl 1114.65124 · doi:10.1016/j.amc.2006.07.092
[30] DOI: 10.1016/j.physleta.2007.03.008 · Zbl 1217.81074 · doi:10.1016/j.physleta.2007.03.008
[31] DOI: 10.1016/j.physleta.2007.09.003 · Zbl 1217.81075 · doi:10.1016/j.physleta.2007.09.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.