×

Robust adaptive finite-time stabilization of nonlinearly parameterized nonholonomic systems. (English) Zbl 1255.93123

Summary: This paper investigates the problem of adaptive finite-time stabilization of nonlinearly parameterized nonholonomic systems. By skilly using the parameter separation, input-state-scaling, and adding a power integrator techniques, an adaptive state feedback controller is obtained. Based on switching strategy to eliminate the phenomenon of uncontrollability, the proposed controller can guarantee that the system states globally finite-time converge to the origin, while other signals remain bounded. Simulation examples demonstrate the effectiveness and the robust features of the proposed approach.

MSC:

93D21 Adaptive or robust stabilization
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Komanovskyand, I., McClamroch, N.N.: Development in nonholonomic control problems. IEEE Control Syst. Mag. 15, 20–36 (1995) · doi:10.1109/37.476384
[2] Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, pp. 181–208 (1983) · Zbl 0528.93051
[3] Murray, R.R., Sastry, S.S.: Nonholonomic motion planning: steering using sinusoids. IEEE Trans. Autom. Control 38, 700–716 (1993) · Zbl 0800.93840 · doi:10.1109/9.277235
[4] Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27, 37–45 (1996) · Zbl 0877.93107 · doi:10.1016/0167-6911(95)00041-0
[5] Sun, Z.D., Ge, S.S., Huo, W., Lee, T.H.: Stabilization of nonholonomic chained systems via nonregular feedback linearization. Syst. Control Lett. 44, 279–289 (2001) · Zbl 0986.93016 · doi:10.1016/S0167-6911(01)00148-7
[6] Tian, Y.P., Li, S.H.: Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica 38, 1139–1146 (2002) · Zbl 1003.93039 · doi:10.1016/S0005-1098(01)00303-X
[7] Jiang, Z.P.: Robust exponential regulation of nonholonomic systems with uncertainties. Automatica 36, 189–209 (2000) · Zbl 0952.93057 · doi:10.1016/S0005-1098(99)00115-6
[8] Xi, Z.R., Feng, G., Jiang, Z.P., Cheng, D.Z.: A switching algorithm for global exponential stabilization of uncertain chained systems. IEEE Trans. Autom. Control 48, 1793–1798 (2003) · Zbl 1364.93674 · doi:10.1109/TAC.2003.817937
[9] Xi, Z.R., Feng, G., Jiang, Z.P., Cheng, D.Z.: Output feedback exponential stabilization of uncertain chained systems. J. Franklin Inst. 344, 36–57 (2007) · Zbl 1119.93057 · doi:10.1016/j.jfranklin.2005.10.002
[10] Do, K., Pan, J.: Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts. Syst. Control Lett. 46, 195–205 (2002) · Zbl 0994.93055 · doi:10.1016/S0167-6911(02)00133-0
[11] Ge, S.S., Wang, Z.P., Lee, T.H.: Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica 39, 1451–1460 (2003) · Zbl 1038.93079 · doi:10.1016/S0005-1098(03)00119-5
[12] Liu, Y.G., Zhang, J.F.: Output feedback adaptive stabilization control design for nonholonomic systems with strong nonlinear drifts. Int. J. Control 78, 474–490 (2005) · Zbl 1115.93082 · doi:10.1080/00207170500080280
[13] Wang, Q.D., Wei, C.L.: Robust adaptive control of nonholonomic systems withnonlinear parameterization. Acta Autom. Sin. 33, 399–403 (2007) · Zbl 1150.93460
[14] Zheng, X.Y., Wu, Y.Q.: Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts. Nonlinear Anal., Theory Methods Appl. 70, 904–920 (2009) · Zbl 1152.93048 · doi:10.1016/j.na.2008.01.037
[15] Gao, F.Z., Yuan, F.S., Yao, H.J.: Robust adaptive control for nonholonomic systems with nonlinear parameterization. Nonlinear Anal., Real World Appl. 11, 3242–3250 (2010) · Zbl 1214.93038 · doi:10.1016/j.nonrwa.2009.11.019
[16] Bhat, S., Bernstein, D.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998) · Zbl 0925.93821 · doi:10.1109/9.668834
[17] Hong, Y.: Finite-time stabilization and stabilizability of a class of controllable systems. Syst. Control Lett. 46, 231–236 (2002) · Zbl 0994.93049 · doi:10.1016/S0167-6911(02)00119-6
[18] Huang, X., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41, 881–888 (2005) · Zbl 1098.93032 · doi:10.1016/j.automatica.2004.11.036
[19] Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Autom. Control 51, 858–862 (2006) · Zbl 1366.93290 · doi:10.1109/TAC.2006.875006
[20] Hong, Y., Wang, J., Xi, Z.: Stabilization of uncertain chained form systems within finite fettling time. IEEE Trans. Autom. Control 50, 1379–1384 (2005) · Zbl 1365.93444 · doi:10.1109/TAC.2005.854620
[21] Qu, Z., Hull, R.A., Wang, J.: Globally stabilizing adaptive control design for nonlinearly parameterized systems. IEEE Trans. Autom. Control 51, 1073–1079 (2006) · Zbl 1366.93587 · doi:10.1109/TAC.2006.876800
[22] Sun, M., Ge, S.S.: Adaptive repetitive control for a class of nonlinearly parametrized systems. IEEE Trans. Autom. Control 51, 1684–1688 (2006) · Zbl 1366.93302 · doi:10.1109/TAC.2006.883028
[23] Hung, N.V.Q., Tuan, H.D., Narikiyo, T., Apkarian, P.: Adaptive control for nonlinearly parameterized uncertainties in robot manipulators. IEEE Trans. Control Syst. Technol. 16, 458–468 (2008) · doi:10.1109/TCST.2007.903088
[24] Lin, W., Qian, C.: Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework. IEEE Trans. Autom. Control 47, 757–774 (2002) · Zbl 1364.93400 · doi:10.1109/TAC.2002.1000270
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.