×

Two enhanced fourth order diffusion models for image denoising. (English) Zbl 1255.68235

Summary: This paper presents two new higher order diffusion models for removing noise from images. The models employ fractional derivatives and are modifications of an existing fourth order partial differential equation (PDE) model which was developed by You and Kaveh as a generalization of the well-known second order Perona-Malik equation. The modifications serve to cure the ill-posedness of the You-Kaveh model without sacrificing performance. Also proposed in this paper is a simple smoothing technique which can be used in numerical experiments to improve denoising and reduce processing time. Numerical experiments are shown for comparison.

MSC:

68U10 Computing methodologies for image processing
68T45 Machine vision and scene understanding
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge-detection by non-linear diffusion II. SIAM J. Numer. Anal. 29(3), 845–866 (1992) · Zbl 0766.65117 · doi:10.1137/0729052
[2] Amann, H.: Time-delayed Perona-Malik problems. Acta Math. Univ. Comen. LXXVI, 15–38 (2007) · Zbl 1132.68067
[3] Bai, J., Feng, X.C.: Fractional order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007) · Zbl 05453693 · doi:10.1109/TIP.2007.904971
[4] Belahmidi, A.: Equations aux dérivées partielles appliquées à la restoration et à l’agrandissement des images. Ph.D. Thesis. Université Paris-Dauphine, Paris (2003)
[5] Belahmidi, A., Chambolle, A.: Time-delay regularization of anisotropic diffusion and image processing. Modél. Math. Anal. Numér. 39(2), 231–251 (2005) · Zbl 1101.68102 · doi:10.1051/m2an:2005010
[6] Bertozzi, A., Greer, J.: Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Commun. Pure Appl. Math. LVII, 0764–0790 (2004) · Zbl 1058.35083
[7] Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005) · Zbl 1108.94004 · doi:10.1137/040616024
[8] Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge-detection by non-linear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992) · Zbl 0746.65091 · doi:10.1137/0729012
[9] Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000) (electronic). doi: 10.1137/S1064827598344169 · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[10] Chan, T.F., Esedoglu, S., Park, F.E.: A fourth order dual method for staircase reduction in texture extraction and image restoration problems. UCLA CAM report 05-28 (April 2005)
[11] Chen, Y., Bose, P.: On the incorporation of time-delay regularization into curvature-based diffusion. J. Math. Imaging Vis. 14(2), 149–164 (2001) · Zbl 0996.68230 · doi:10.1023/A:1011211315825
[12] Cottet, G.H., Ayyadi, M.E.: A Volterra type model for image processing. IEEE Trans. Image Process. 7, 292–303 (1998) · doi:10.1109/83.661179
[13] Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale-space properties of fractional high order linear filtering. In: Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459. Springer, Berlin (2005) · Zbl 1119.68469
[14] Didas, S., Weickert, J., Burgeth, B.: Stability and local feature enhancement of higher order nonlinear diffusion filtering. Pattern Recognit. 3663, 451–458 (2005)
[15] Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35(3), 208–226 (2009). doi: 10.1007/s10851-009-0166-x · Zbl 1490.94011 · doi:10.1007/s10851-009-0166-x
[16] Guidotti, P.: A new nonlocal nonlinear diffusion of image processing. J. Differ. Equ. 246(12), 4731–4742 (2009) · Zbl 1170.35450 · doi:10.1016/j.jde.2009.03.017
[17] Guidotti, P.: A new well-posed nonlinear nonlocal diffusion. Nonlinear Anal. 72, 4625–4637 (2010) · Zbl 1191.35010 · doi:10.1016/j.na.2010.02.040
[18] Guidotti, P., Lambers, J.: Two new nonlinear nonlocal diffusions for noise reduction. J. Math. Imaging Vis. 33(1), 25–37 (2009) · Zbl 1523.94010 · doi:10.1007/s10851-008-0108-z
[19] Guidotti, P., Longo, K.: Well-posedness for a class of fourth order diffusions for image processing. Nonlinear Differ. Equ. Appl. (to appear) · Zbl 1227.35149
[20] Hajiaboli, M.: A self-governing hybrid model for noise removal. In: Advances in Image and Video Technology. Lecture Notes in Computer Science, vol. 5414. Springer, Berlin (2008)
[21] Hajiaboli, M.: An anisotropic fourth-order partial differential equation for noise removal. In: Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 5567. Springer, Berlin (2009)
[22] Kichenassamy, S.: The Perona-Malik paradox. SIAM J. Appl. Math. 57(5), 1328–1342 (1997) · Zbl 0887.35071 · doi:10.1137/S003613999529558X
[23] Lambers, J.V.: Enhancement of Krylov subspace spectral methods by block Lanczos iteration. Electron. Trans. Numer. Anal. 31, 86–109 (2008) · Zbl 1171.65071
[24] Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Represent. 18(4), 322–330 (2007) · Zbl 05461737 · doi:10.1016/j.jvcir.2007.04.005
[25] Lysaker, M., Lundervold, A., Tai, X.: Noise removal using fourth order differential equations with applications to medical magnetic resonance images in space-time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003) · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[26] Mathieu, B., Melchior, P., Outstaloup, A., Ceyral, C.: Fractional differentiation for edge detection. Signal Process. 83, 2421–2432 (2003) · Zbl 1145.94309 · doi:10.1016/S0165-1684(03)00194-4
[27] Nitzberg, M., Shiota, T.: Nonlinear image smoothing with edge and corner enhancement. Tech. Report 90-2. Harvard University, Cambridge, MA (1990)
[28] Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14, 826–833 (1992) · Zbl 05112083 · doi:10.1109/34.149593
[29] Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 161–192 (1990)
[30] Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proceedings of the SIGGRAPH 1999 Annual Conference on Computer Graphics, August 8–13, 1999, Los Angeles, CA, USA, Siggraph Annual Conference Series, pp. 83–90. ACM Siggraph, Addison-Wesley, Longman, Harlow (1999)
[31] Wei, G.: Generalized Perona-Malik equation for image restoration. IEEE Signal Process. Lett. 6(7), 165–167 (1999) · doi:10.1109/97.769359
[32] Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner Verlag, Stuttgart (1998) · Zbl 0886.68131
[33] Witkin, A.P.: Scale-space filtering. In: Proc. IJCAI, Karlsruhe, pp. 1021–1019 (1983)
[34] You, Y., Kaveh, M.: Fourth order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000) · Zbl 0962.94011 · doi:10.1109/83.869184
[35] You, Y., Xu, W., Tannenbaum, A., Kaveh, M.: Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. Image Process. 5(11), 1539–1553 (1996) · doi:10.1109/83.541424
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.