×

A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations. (English) Zbl 1255.65245

Summary: We present some efficient direct solvers for solving a system of high order linear Volterra-Fredholm integro-differential equations (VFIDEs). A new approach implementing a collocation method in combination with operational matrices of Bernstein polynomials for the numerical solution of VFIDEs is introduced. The main characteristic behind this approach is that it reduces such problems to ones of solving systems of algebraic equations. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Numerical results with comparisons are given to confirm the reliability of the proposed method for solving systems of high order linear VFIDEs.

MSC:

65R20 Numerical methods for integral equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
45D05 Volterra integral equations
45B05 Fredholm integral equations
45J05 Integro-ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jaswon, M. A.; Symm, G. T., Integral Equation Methods in Potential Theory and Elastostatics (1977), Academic Press: Academic Press London · Zbl 0414.45001
[2] Delves, L. M.; Mohamed, J. L., Computational Methods for Integral Equations (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0592.65093
[3] Schiavane, P.; Constanda, C.; Mioduchowski, A., Integral Methods in Science and Engineering (2002), Birkhäuser: Birkhäuser Boston
[4] Adams, E.; Spreuer, H., Uniqueness and stability for boundary value problems with weakly coupled systems of nonlinear integro-differential equations and application to chemical reactions, J. Math. Anal. Appl., 49, 393-410 (1975) · Zbl 0301.45013
[5] Holmaker, K., Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones, SIAM J. Math. Anal., 24, 1, 116-128 (1993) · Zbl 0767.45005
[6] Kyselka, A., Properties of systems of integro-differential equations in the statistics of polymer chains, Polym. Sci. USSR, 19, 11, 2852-2858 (1977)
[7] Bloom, F., Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory, J. Math. Anal. Appl., 73, 524-542 (1980) · Zbl 0434.45018
[8] Bellomo, N.; Firmani, B.; Guerri, L., Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor-immune cells competition, Appl. Math. Lett., 12, 39-44 (1999) · Zbl 0932.92016
[9] Abou-Dina, M. S.; Helal, M. A., Reduction for the nonlinear problem of fluid waves to a system of integro-differential equations with an oceanographical application, J. Comput. Appl. Math., 95, 65-81 (1998) · Zbl 0941.76009
[10] Wazwaz, A. M., The existence of noise terms for systems of inhomogeneous differential and integral equations, Appl. Math. Comput., 146, 81-92 (2003) · Zbl 1032.65114
[11] Dascoglua, A. A.; Sezer, M., Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations, J. Franklin. Inst., 342, 688-701 (2005) · Zbl 1086.65121
[12] Maleknejad, K.; Mirzae, F.; Abbasbandy, S., Solving linear integro-differential equations system by using rationalized Haar functions method, Appl. Math. Comput., 155, 317-328 (2004) · Zbl 1056.65144
[13] Maleknejad, K.; Tavassoli Kajani, M., Solving linear integro-differential equation system by Galerkin methods with hybrid functions, Appl. Math. Comput., 159, 603-612 (2004) · Zbl 1063.65145
[14] Pour-Mahmoud, J.; Rahimi-Ardabili, M. Y.; Shahmorad, S., Numerical solution of the system of Fredholm integro-differential equations by the Tau method, Appl. Math. Comput., 168, 465-478 (2005) · Zbl 1082.65600
[15] Arikoglu, A.; Ozkol, I., Solutions of integral and integro-differential equation systems by using differential transform method, Comput. Math. Appl., 56, 2411-2417 (2008) · Zbl 1165.45300
[16] Baker, C. T.H.; Tang, A., Stability analysis of continuous implicit Runge-Kutta methods for Volterra integro-differential systems with unbounded delays, Appl. Numer. Math., 24, 153-173 (1997) · Zbl 0878.65122
[17] Ganesh, M.; Sloan, I. H., Optimal order spline methods for nonlinear differential and integro-differential equations, Appl. Numer. Math., 29, 445-478 (1999) · Zbl 0930.65145
[18] Maleknejad, K.; Safdari, H.; Nouri, M., Numerical solution of an integral equations system of the first kind by using an operational matrix with block pulse functions, Internat. J. Systems Sci., 42, 1, 195-199 (2011) · Zbl 1210.65204
[19] Al-Faour, Omer M. A.; Saeed, Rostam K., Solution of a system of linear Volterra integral and integro-differential equations by spectral method, Al-Nahrain University Journal for Science, 6, 2, 30-46 (2006)
[20] Jangveladze, T.; Kiguradze, Z.; Neta, B., Finite difference approximation of a nonlinear integro-differential system, Appl. Math. Comput., 215, 615-628 (2009) · Zbl 1179.65162
[21] Maleknejad, K.; Hashemizadeh, E.; Ezzati, R., A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation, Commun. Nonlinear Sci. Numer. Simul., 16, 647-655 (2011) · Zbl 1221.65334
[22] Doha, E. H.; Bhrawy, A. H.; Saker, M. A., Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations, Appl. Math. Lett., 24, 559-565 (2011) · Zbl 1236.65091
[23] Doha, E. H.; Bhrawy, A. H.; Saker, M. A., On the derivatives of Bernstein polynomials: an application for the solution of high even-order differential equations, Bound. Value Probl., 2011 (2011), Article ID 829543, 16 pages · Zbl 1220.33006
[24] Mandal, B. N.; Bhattacharya, S., Numerical solution of some classes of integral equations using Bernstein polynomials, Appl. Math. Comput., 190, 707-1716 (2007) · Zbl 1122.65416
[25] Rivlin, T. J., An Introduction to the Approximation of Functions (1969), Dover Publications: Dover Publications New York · Zbl 0189.06601
[26] Yousefi, S. A.; Behroozifar, M., Operational matrices of Bernstein polynomials and their applications, Internat. J. Systems Sci., 41, 6, 709-716 (2010) · Zbl 1195.65061
[27] Maleknejad, K.; Hashemizadeh, E.; Basirat, B., Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations, Commun. Nonlinear Sci. Numer. Simul., 17, 1, 52-61 (2012) · Zbl 1244.65243
[28] Styś, K.; Styś, T., A higher-order finite difference method for solving a system of integro-differential equations, J. Comput. Appl. Math., 126, 33-46 (2000) · Zbl 0979.65124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.