×

Shape optimization of thin walled structures governed by geometrically nonlinear mechanics. (English) Zbl 1253.74079

Summary: We introduce a structural optimization strategy that combines FE-based parametrization with nonlinear kinematics in order to optimize the shape of thin shell structures. The optimization is based on gradient based strategies where the required derivatives are formulated by the adjoint approach. The applied solution algorithm combines the well known nonlinear path following strategies with the design update procedure of the shape optimization. This results in robust and flexible methods that require only a minimum of system evaluations. The proposed optimization goals improve the load carrying behavior of the structure and minimize displacements and stresses. It is shown that such efficient designs also exhibit an improved limit load. This contribution illustrates the application of the proposed method by several shape optimization problems. The presented results prove the exceptional performance of the optimized designs even if the optimal design is disturbed by unavoidable imperfections. It is shown that the application of nonlinear kinematics in the shape optimization of thin shell structures allows for a much more realistic system response and gradient data. The proposed approach is applicable to all kind of optimization strategies like topology, sizing or material optimization, respectively.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74K25 Shells
49Q10 Optimization of shapes other than minimal surfaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] de Boer, A.; van der Schoot, M.; Bijl, H., Mesh deformation based on radial basis function interpolation, Comput. Struct., 85, 784-795 (2007)
[2] Haftka, R. T.; Gürdal, Z., Elements of Structural Optimization (1992), Kluwer Academic Publishers · Zbl 0782.73004
[3] Bletzinger, K. U.; Wüchner, R.; Daoud, F.; Camprubi, N., Computational methods for form finding and optimization of shells and membranes, Comput. Methods Appl. Mech. Engrg., 194, 3438-3452 (2005) · Zbl 1092.74032
[4] M. Firl, R. Wüchner, K.U. Bletzinger, Regularization of shape optimization problems using fe-based parametrization, Struct. Multidiscip. Optimiz., in press.; M. Firl, R. Wüchner, K.U. Bletzinger, Regularization of shape optimization problems using fe-based parametrization, Struct. Multidiscip. Optimiz., in press. · Zbl 1274.74268
[5] Hadamard, J., Leçons sur la Propagation des Ondes et les Équations de l’Hydrodynamique (1903), Herman: Herman Paris · JFM 34.0793.06
[6] J. Hadamard, Mémoire sur le problème d’analyse relatif à l’Équilibre des plaques elastiques encastrées. in: Oeuvres, tome 2, 1968.; J. Hadamard, Mémoire sur le problème d’analyse relatif à l’Équilibre des plaques elastiques encastrées. in: Oeuvres, tome 2, 1968. · JFM 39.1022.01
[7] Arora, J. S., Introduction to Optimum Design (2004), Elsevier Academic Press
[8] Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design (1984), McGraw Hill · Zbl 0697.73069
[9] Arora, J. S.; Wang, Q., Review of formulations for structural and mechanical system optimization, Struct. Multidiscip. Optim., 30, 251-272 (2005) · Zbl 1243.74002
[10] Smaoui, H.; Schmit, L. A., An integrated approach to synthesis of geometrically nonlinear structures, Int. J. Numer. Methods Engrg., 26, 555-570 (1988) · Zbl 0635.73098
[11] Haftka, R. T.; Kamat, M. P., Simultaneous nonlinear structural analysis and design, Comput. Mech., 4, 409-416 (1989) · Zbl 0692.73064
[12] Ringertz, U. T., Optimization of structures with nonlinear response, Engrg. Optim., 14, 179-188 (1989)
[13] Ringertz, U. T., Numerical methods for optimization of nonlinear shell structures, Struct. Optim., 4, 193-198 (1992)
[14] Ringertz, U. T., An algorithm for optimization of nonlinear shell structures, Int. J. Numer. Methods Engrg., 38, 299-314 (1995) · Zbl 0824.73045
[15] Stegmann, J.; Lund, E., Nonlinear topology optimization of layered shell structures, Struct. Multidiscip. Optim., 29, 349-360 (2005) · Zbl 1118.74343
[16] Chan, C. M.; Wang, Q., Nonlinear stiffness design optimization of tall reinforced concrete buildings under service loads, J. Struct. Engrg. (ASCE), 132 (2006)
[17] Kumar, A. V.A., sequential optimization algorithm using logarithmic barriers: applications to structural optimization, J. Mech. Des. (ASME), 122 (2000)
[18] Shin, D. K.; Gürdal, Z.; Griffin, O. H., Minimum weight design of laminated composite plates for postbuckling performance, Appl. Mech. Rev., 44 (1991)
[19] Ibrahimbegovic, A.; Knopf-Lenoir, C.; Kučerová, A.; Villon, P., Optimal design and optimal control of structures undergoing finite rotations and elastic deformations, Int. J. Numer. Methods Engrg., 61, 2428-2460 (2004) · Zbl 1075.74607
[20] Kruzelecki, J.; Stawiarski, A., Optimal design of thin-walled columns for buckling under loadings controlled by displacements, Struct. Multidiscip. Optim., 42, 305-314 (2010) · Zbl 1274.74277
[21] Ohsaki, M.; Ogawa, T.; Tateishi, R., Shape optimization of curves and surfaces considering fairness metrics and elastic stiffness, Struct. Multidiscip. Optim., 24, 449-456 (2002)
[22] Majak, J.; Hannus, S., Optimal design of plastic cylindrical shells of von mises material, Struct. Multidiscip. Optim., 30, 227-232 (2005)
[23] Lellep, J.; Tungel, E., Optimization of plastic spherical shells of von mises material, Struct. Multidiscip. Optim., 30, 381-387 (2005)
[24] R. Reitinger, Stabilität und Optimierung imperfektionsempfindlicher Tragwerke, Ph.D. Thesis, Institut für Baustatik, Uni Stuttgart, Bericht Nr. 17, 1994.; R. Reitinger, Stabilität und Optimierung imperfektionsempfindlicher Tragwerke, Ph.D. Thesis, Institut für Baustatik, Uni Stuttgart, Bericht Nr. 17, 1994.
[25] R. Kemmler, Stabilität und groe Verschiebungen in der Topologie und Formoptimierung. Ph.D. Thesis, Institut für Baustatik, Uni Stuttgart, Bericht Nr. 41, 2004.; R. Kemmler, Stabilität und groe Verschiebungen in der Topologie und Formoptimierung. Ph.D. Thesis, Institut für Baustatik, Uni Stuttgart, Bericht Nr. 41, 2004.
[26] R. Kemmler, S. Schwarz, E. Ramm, Topology optimization including geometrically nonlinear response, in: C.L. Bloebaum, K.E. Lewis, R.W. Magne (Eds.), Proceedings of the 3rd World Congress of Structural and Multidisciplinary Optimization, May 17-21, 1999, Buffalo, USA, 1999.; R. Kemmler, S. Schwarz, E. Ramm, Topology optimization including geometrically nonlinear response, in: C.L. Bloebaum, K.E. Lewis, R.W. Magne (Eds.), Proceedings of the 3rd World Congress of Structural and Multidisciplinary Optimization, May 17-21, 1999, Buffalo, USA, 1999.
[27] Buhl, T.; Pedersen, C. B.W.; Sigmund, O., Stiffness design of geometrically non-linear structures using topology optimization, Struct. Optim., 19, 93-104 (2000)
[28] Holzapfel, G. H., Nonlinear Solid Mechanics (2000), John Wiley & Sons: John Wiley & Sons Chichester
[29] Bletzinger, K. U.; Firl, M.; Daoud, F., Approximation of derivatives in semi-analytical structural optimization, Comput. Struct., 86, 1404-1416 (2008)
[30] Haug, E. J.; Choi, K. K.; Komkov, V., Design Sensitivity Analysis of Structural Systems (1986), Academic Press Inc. · Zbl 0618.73106
[31] Baier, H.; Seeselberg, C.; Specht, B., Optimierung in der Strukturmechanik (1994), Vieweg Verlag
[32] Bletzinger, K. U.; Kimmich, S.; Ramm, E., Efficient modeling in shape optimal design, Comput. Syst. Engrg., 2, 483-495 (1991)
[33] M. Firl, Optimal shape design of shell structures, Ph.D. Thesis, Chair of Structural Analysis, TU Munich, Report Nr. 15, 2011.; M. Firl, Optimal shape design of shell structures, Ph.D. Thesis, Chair of Structural Analysis, TU Munich, Report Nr. 15, 2011.
[34] Bends, M.; Sigmund, O., Topology Optimization (2003), Springer-Verlag
[35] Bletzinger, K. U.; Firl, M.; Linhard, J.; Wüchner, R., Optimal shapes of mechanically motivated surfaces, Comput. Methods Appl. Mech. Engrg., 199, 324-333 (2010) · Zbl 1227.74043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.