×

An interpolation theorem for sublinear operators on non-homogeneous metric measure spaces. (English) Zbl 1252.42025

Let \((X,d,\mu)\) be a metric measure space with the geometric doubling property and the upper doubling condition for the measure \(\mu\). In this setting, the regularized BMO space \(\text{RBMO}(\mu)\) and the Hardy space \(H^1(\mu)\) have been defined and studied in a number of recent papers. Here, the authors prove that any sublinear operator \(T\) that is bounded from \(H^1(\mu)\) to \(L^{1,\infty}(\mu)\) and from \(L^\infty(\mu)\) to \(\text{RBMO}(\mu)\), is also bounded on \(L^p(\mu)\) for all \(p\in(1,\infty)\). This improves a result of B. T. Anh and X. T. Duong [“Hardy spaces, regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces”, arXiv:1009.1274, to appear in J. Geom. Anal.] who proved it for ‘linear’ instead of ‘sublinear’ and \(L^1(\mu)\) instead of \(L^{1,\infty}(\mu)\). The proof again uses the Calderón–Zygmund decomposition of Anh and Duong [op. cit.] in this setting, but also needs some new ideas.

MSC:

42B35 Function spaces arising in harmonic analysis
42B25 Maximal functions, Littlewood-Paley theory
47B38 Linear operators on function spaces (general)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid EMIS

References:

[1] B.T. Anh and X.T. Duong, Hardy spaces, regularized BMO spaces and the boundeness of Calderón-Zygmund operators on non-homogeneous spaces , J. Geom. Anal., doi: 10.1007/s12220-011-9268-y. · Zbl 1267.42013
[2] R.R. Coifman and R. Rochberg, Another characterization of BMO , Proc. Amer. Math. Soc. 79 (1980), 249-254. · Zbl 0432.42016
[3] R.R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogenes , Lecture Notes in Math. 242 , Springer, Berlin, 1971. · Zbl 0224.43006
[4] R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis , Bull. Amer. Math. Soc. 83 (1977), 569-645. · Zbl 0358.30023
[5] P. Hajłasz and P. Koskela, Sobolev met Poincaré , Mem. Amer. Math. Soc. 145 (2000), no. 688. · Zbl 0954.46022
[6] J. Heinenon, Lectures on Analysis on Metric Spaces , Springer-Verlag, New York, 2001. · Zbl 0985.46008
[7] G. Hu, Y. Meng and D. Yang, A new characterization of regularized BMO spaces on non-homogeneous spaces and its applications , · Zbl 1278.42015
[8] T. Hytönen, A framework for non-homogeneous analysis on metric spaces, and the \(\rbmo\) space of Tolsa , Publ. Mat. 54 (2010), 485-504. · Zbl 1246.30087
[9] T. Hytönen, S. Liu, Da. Yang and Do. Yang, Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces , Canad. J. Math. doi:10.4153/CJM-2011-065-2.
[10] T. Hytönen, Da. Yang and Do. Yang, The Hardy space \(H^1\) on non-homogeneous metric spaces , Math. Proc. Cambridge Philos. Soc. 153 (2012), no. 1, 9-31. · Zbl 1250.42076
[11] T. Hytönen and H. Martikainen, Non-homogeneous \(Tb\) theorem and random dyadic cubes on metric measure spaces , J. Geom. Anal., doi: 10.1007/s1220-011-9230-z. · Zbl 1261.42017
[12] H. Lin and D. Yang, Spaces of type BLO on non-homogeneous metric measure spaces , Front. Math. China 6 (2011), 271-292. · Zbl 1217.42049
[13] S. Liu, Da. Yang and Do. Yang, Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: equivalent characterizations , J. Math. Anal. Appl. 386 (2012), 258-272. · Zbl 1230.42020
[14] J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures , Duke Math. J. 102 (2000), 533-565. · Zbl 0964.42009
[15] F. Nazarov, S. Treil and A. Volberg, The \(Tb\)-theorem on non-homogeneous spaces , Acta Math. 190 (2003), 151-239. · Zbl 1065.42014
[16] X. Tolsa, BMO, \(H^1\) and Calderón-Zygmund operators for non doubling measures , Math. Ann. 319 (2001), 89-149. · Zbl 0974.42014
[17] X. Tolsa, Littlewood-Paley theory and the \(T(1)\) theorem with non-doubling measures , Adv. Math. 164 (2001), 57-116. · Zbl 1015.42010
[18] X. Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity , Acta Math. 190 (2003), 105-149. · Zbl 1060.30031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.