×

The role of immunity and seasonality in cholera epidemics. (English) Zbl 1251.92031

Summary: This paper presents a mathematical model for cholera epidemics which comprises seasonality, loss of host immunity, and control mechanisms acting to reduce cholera transmission. A collection of data related to the cholera disease allows us to show that outbreaks in endemic areas are subject to a resonant behavior, since the intrinsic oscillation period of the disease (\(\sim 1\) year) is synchronized with the annual contact rate variation. Moreover, we argue that the short period of the host immunity may be associated to secondary peaks of incidence observed in some regions (a bimodal pattern). Finally, we explore some possible mechanisms of cholera control, and analyze their efficiency. We conclude that, besides mass vaccination-which may be impracticable-improvements in sanitation system and food/personal hygiene are the most effective ways to prevent an epidemic.

MSC:

92C60 Medical epidemiology
93C95 Application models in control theory
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brayton, P. R.; Tamplin, M. L.; Huq, A.; Colwell, R. R., Enumeration of vibrio cholerae 01 in Bangladesh waters by fluorescent-antibody direct viable count, Appl. Environ. Microbiol., 53, 2862-2865 (1987)
[2] Cash, R.; Muic, S. I.; Libonati, J. P.; Snyder, M. J.; Wenzel, R. P.; Hornick, R. B., Response of man to infection with Vibrio cholerae. I. Clinical, serologic, and bacteriologic responses to a known inoculum, J. Infect. Dis., 129, 45-52 (1974) · doi:10.1093/infdis/129.1.45
[3] Codeço, C. (2001). Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infectious Diseases, 1. doi:10.1186/1471-2334-1-1.
[4] Colwell, R. R.; Huq, A., Environmental reservoir of Vibrio cholerae, the causative agent of cholera, Ann. N.Y. Acad. Sci., 740, 44-53 (1994) · doi:10.1111/j.1749-6632.1994.tb19852.x
[5] Curtis, V. A.; Danquah, L. O.; Aunger, R. V., Planned, motivated and habitual hygiene behaviour: an eleven country review, Health Educ. Res., 24, 655-673 (2009) · doi:10.1093/her/cyp002
[6] Dushoff, J.; Plotkin, J. B.; Levin, S. A.; Earn, D. J. D., Dynamical resonance can account for the seasonality of influenza epidemics, Proc. Natl. Acad. Sci. USA, 101, 48, 16915-16916 (2004) · doi:10.1073/pnas.0407293101
[7] Ferreira, C. P.; Yang, Y. M.; Esteva, L., Assessing the suitability of sterile insect technique applied to Aedes aegypti, J. Biol. Syst., 16, 565-577 (2008) · doi:10.1142/S0218339008002691
[8] Greenmam, J.; Kamo, M.; Boots, M., External forcing of ecological and epidemiological systems: a resonance approach, Physica D, 190, 136-151 (2004) · Zbl 1040.92046 · doi:10.1016/j.physd.2003.08.008
[9] Hartley, D. M.; Morris, J. G. Jr.; Smith, D. L., Hiperinfectivity: a critical element in the ability of V. cholerae to cause epidemics?, PLoS Med., 3, 1, 63-69 (2006) · doi:10.1371/journal.pmed.0030007
[10] Hsu, S.; Hsieh, Y., On the role of asymptomatic infection in transmission dynamics of infectious disease, Bull. Math. Biol., 70, 134-155 (2008) · Zbl 1281.92060 · doi:10.1007/s11538-007-9245-6
[11] Hurwitz, A., On the conditions under which an equation has only roots with negative real parts, Math. Ann., 46, 273-284 (1895) · JFM 26.0119.03 · doi:10.1007/BF01446812
[12] Kaper, J. B.; Morris, J. G. Jr.; Levine, M. M., Cholera, Clin. Microbiol. Rev., 8, 48-86 (1995)
[13] Keeling, M. J.; Rohani, P., Modelling infectious diseases in humans and animals (2008), Princeton: Princeton University Press, Princeton · Zbl 1279.92038
[14] King, A. A.; Ionides, E. L.; Pascual, M.; Bouma, M. J., Inapparent infections and cholera dynamics, Nature, 454, 14, 877-881 (2008) · doi:10.1038/nature07084
[15] Koelle, K.; Rodó, X.; Pascual, M.; Yunus, Md.; Mostafa, G., Refractory periods and climate forcing in cholera dynamics, Nature, 436, 4, 696-700 (2005) · doi:10.1038/nature03820
[16] Koelle, K.; Pascual, M., Disentangling extrinsic from intrinsic factors in disease dynamics: a nonlinear time series approach with an application to cholera, Am. Nat., 163, 6, 901-913 (2004) · doi:10.1086/420798
[17] Koelle, K.; Pascual, M.; Yunus, Md., Serotype cycles in cholera dynamics, Proc. Royal Soc., Biol. Sci., 273, 2879-2886 (2006) · doi:10.1098/rspb.2006.3668
[18] Longini, I. M. Jr.; Nizam, A.; Ali, M.; Yunus, M.; Shenvi, N.; Clemens, J. D., Controlling endemic cholera with oral vaccines, PLoS Med., 4, 11, 1776-1783 (2007) · doi:10.1371/journal.pmed.0040336
[19] Lipp, E. K.; Huq, A.; Colwell, R. R., Effects of global climate on infectious disease: the cholera model, Clin. Microbiol. Rev., 15, 4, 757-770 (2002) · doi:10.1128/CMR.15.4.757-770.2002
[20] Mahalanabis, A.; Lopez, A. L.; Sur, D.; Deen, J.; Manna, B., A randomized, placebo-controlled trial of the bivalent killed, whole-cell, oral cholera vaccine in adults and children in a cholera endemic area in Kolkata, India, PLoS ONE, 3, 6, 1-7 (2008) · doi:10.1371/journal.pone.0002323
[21] Merrell, D. S.; Butler, S. M.; Qadri, F.; Dolganov, N. A.; Alama, A.; Cohen, M. B.; Calderwood, S. B.; Schoolnik, G. K.; Camilli, A., Host-induced epidemic spread of the cholera bacterium, Nature, 417, 6, 642-645 (2002)
[22] Neilan, R. L. M.; Schaefer, E.; Gaff, H.; Fister, K. R.; Lenhart, S., Modeling optimal intervention strategies for cholera, Bull. Math. Biol. (2010) · Zbl 1201.92045
[23] Nayfeh, A. H.; Mook, D. T., Nonlinear oscillations (2004), Weinheim: Wiley-VCH, Weinheim
[24] Pascual, M.; Bouma, M. J.; Dobson, A. P., Cholera and climate: revisiting the quantitative evidence, Microbes Infect., 4, 237-245 (2002) · doi:10.1016/S1286-4579(01)01533-7
[25] Seidlein, L. V., Vaccines for cholera control: does herd immunity play a role?, PLoS Med., 4, 11, 1719-1721 (2007)
[26] Sur, D., Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomised, double-blind, placebo-controlled trial, Lancet, 349, 1694-1702 (2009) · doi:10.1016/S0140-6736(09)61297-6
[27] Tauxe, R. V.; Mintz, E. D.; Quick, R. E., Epidemic cholera in the New World: translating field epidemiology into prevention strategies, Emerg. Infect. Dis., 1, 4, 141-146 (1995) · doi:10.3201/eid0104.950408
[28] World Health Organization, High hopes for oral cholera vaccine, Bull. World Health Organ., 88, 3, 165-166 (2010) · doi:10.2471/BLT.10.010310
[29] Vezzulli, L.; Pruzzo, C.; Huq, A.; Colwell, R. R., Environmental reservoirs of Vibrio cholerae and their role in cholera, Environ. Microbiol. Rep., 2, 1, 27-33 (2010) · doi:10.1111/j.1758-2229.2009.00128.x
[30] Zuckerman, J. N.; Rombo, L.; Fisch, A., The true burden and risk of cholera: implications for prevention and control, Lancet Infect. Dis., 7, 8, 521-530 (2007) · doi:10.1016/S1473-3099(07)70138-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.