×

Some techniques on nonlinear analysis and applications. (English) Zbl 1248.47024

The main aim of this interesting article is to present in a context of strong generality (that is, arbitrary mappings between spaces with almost no structure) versions of two classical results about linear operators between Banach spaces.
The first one is the Inclusion Theorem for absolutely summing mappings, originally proved by S. Kwapień in [“Some remarks on \((p,q)\)-absolutely summing operators in \(\ell_{p}\)-spaces”, Stud. Math. 29, 327–337 (1968; Zbl 0182.17001)]. It states the following: for \(1\leq p_1\leq q_1<\infty\), \(1\leq p_2\leq q_2<\infty\), if a continuous linear operator between Banach spaces \(u:X\to Y\) satisfies that there exists \(C>0\) such that \[ \left(\sum_{j=1}^m \|u(x_j)\|^{q_1}\right)^{1/q_1}\leq C \sup_{\varphi\in B_{X^*}}\left(\sum_{j=1}^m |\varphi(x_j)|^{p_1}\right)^{1/p_1} \] for every \(m\) and all \(x_1,\dots, x_m\in X\), then it should also satisfy \[ \left(\sum_{j=1}^m \|u(x_j)\|^{q_2}\right)^{1/q_2}\leq C \sup_{\varphi\in B_{X^*}}\left(\sum_{j=1}^m |\varphi(x_j)|^{p_2}\right)^{1/p_2} \] for every \(m\) and all \(x_1,\dots, x_m\in X\), provided that \[ p_1\leq p_2,\qquad q_1\leq q_2\qquad\text{ and }\qquad \frac{1}{p_1}-\frac{1}{q_1}<\frac{1}{p_2}-\frac{1}{q_2}. \] Its direct proof, which combines Hölder’s inequality with the homogeneity of linear operators, can be adapted for multilinear maps or homogeneous polynomials. The authors here formulate a slightly weaker statement for arbitrary mappings between general spaces and derive from it the stronger multilinear result. Naturally, this broad presentation could also be useful to obtain potential extensions to other unexplored settings.
Before illustrating some of the applications, the authors present an enjoyable and careful review of the emergence and development of the concept of absolute summability for linear operators and of some of its multilinear versions.
The second result exposed here under broad conditions is the classical Pietsch Domination Theorem for absolutely summing linear operators [A. Pietsch, “Absolut \(p\)-summierende Abbildungen in normierten Räumen”, Stud. Math. 28, 333–353 (1967; Zbl 0156.37903)]. In the last decades, several extensions and variations of the concept of absolute summability have been developed for different classes of non-linear mappings and in almost every of such contexts a kind of Pietsch Domination Theorem was proved. All these results are particular cases of the “full general Pietsch Domination Theorem” presented in this paper.

MSC:

47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47L22 Ideals of polynomials and of multilinear mappings in operator theory
47H99 Nonlinear operators and their properties
47H60 Multilinear and polynomial operators
46G25 (Spaces of) multilinear mappings, polynomials
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Achour, D.; Mezrag, L., On the Cohen strongly \(p\)-summing multilinear operators, J. Math. Anal. Appl., 327, 550-563 (2007) · Zbl 1121.47013
[2] Acosta, M.; García, D.; Maestre, M., A multilinear Lindenstrauss theorem, J. Funct. Anal., 235, 122-136 (2006) · Zbl 1101.46029
[3] Albiac, F.; Kalton, N., Topics in Banach Space Theory (2005), Springer-Verlag
[4] Aron, R.; Globevnik, J., Analytic Functions on \(c_0\), Rev. Mat. Univ. Complut. Madrid, 2, 27-33 (1989) · Zbl 0748.46021
[5] Banach, S., Théorie des opérations linéaires (1932), PWN · JFM 58.0420.01
[6] Bennett, G., Inclusion mappings between \(\ell^p\) spaces, J. Funct. Anal., 12, 420-427 (1973)
[7] Bennett, G., Schur multipliers, Duke Math. J., 44, 609-639 (1977) · Zbl 0389.47015
[8] Bohnenblust, H. F.; Hille, E., On the absolute convergence of Dirichlet series, Ann. of Math., 32, 600-622 (1931) · Zbl 0001.26901
[9] Bombal, F.; Peréz-García, D.; Villanueva, I., Multilinear extensions of Grothendieck’s theorem, Q. J. Math., 55, 441-450 (2004) · Zbl 1078.46030
[10] Botelho, G.; Braunss, H.-A.; Junek, H.; Pellegrino, D., Holomorphy types and ideals of multilinear mappings, Studia Math., 177, 43-65 (2006) · Zbl 1112.46038
[11] Botelho, G.; Michels, C.; Pellegrino, D., Complex interpolation and summability properties of multilinear operators, Rev. Mat. Complut., 23, 139-161 (2010) · Zbl 1210.46031
[12] Botelho, G.; Pellegrino, D., Absolutely summing operators on Banach spaces with no unconditional basis, J. Math. Anal. Appl., 321, 50-58 (2006) · Zbl 1112.46039
[13] Botelho, G.; Pellegrino, D., Coincidence situations for absolutely summing non-linear mappings, Port. Math., 64, 175-191 (2007) · Zbl 1137.46029
[14] Botelho, G.; Pellegrino, D., When every multilinear mapping is multiple summing, Math. Nachr., 282, 1414-1422 (2009) · Zbl 1191.46041
[15] Botelho, G.; Pellegrino, D.; Rueda, P., Pietsch’s factorization theorem for dominated polynomials, J. Funct. Anal., 243, 257-269 (2007) · Zbl 1118.46041
[16] Botelho, G.; Pellegrino, D.; Rueda, P., A nonlinear Pietsch Domination Theorem, Monatsh. Math., 158, 247-257 (2009) · Zbl 1208.46045
[17] Botelho, G.; Pellegrino, D.; Rueda, P., A unified Pietsch Domination Theorem, J. Math. Anal. Appl., 365, 269-276 (2010) · Zbl 1193.46026
[18] Botelho, G.; Pellegrino, D.; Rueda, P., Cotype and absolutely summing linear operators, Math. Z., 267, 1-7 (2011) · Zbl 1226.47017
[19] Çaliskan, E.; Pellegrino, D., On the multilinear generalizations of the concept of absolutely summing operators, Rocky Mountain J. Math., 37, 1137-1154 (2007) · Zbl 1152.46034
[20] Carl, B., Absolut \((p, 1)\)-summierende identische operatoren von \(l_u\) nach \(l_v\), Math. Nachr., 63, 353-360 (1974) · Zbl 0292.47019
[21] Defant, A.; Floret, K., Tensor Norms and Operator Ideals, North-Holland Math. Stud., vol. 176 (1993), North-Holland: North-Holland Amsterdam · Zbl 0774.46018
[22] Defant, A.; García, D.; Maestre, M.; Pérez-García, D., Bohr’s strip for vector valued Dirichlet series, Math. Ann., 342, 533-555 (2008) · Zbl 1154.32001
[23] Defant, A.; Pérez-García, D., A tensor norm preserving unconditionality for \(L_p\)-spaces, Trans. Amer. Math. Soc., 360, 3287-3306 (2008) · Zbl 1159.46045
[24] Defant, A.; Sevilla-Peris, P., A new multilinear insight on Littlewood’s 4/3-inequality, J. Funct. Anal., 256, 1642-1664 (2009) · Zbl 1171.46034
[25] Diestel, J., An elementary characterization of absolutely summing operators, Math. Ann., 196, 101-105 (1972) · Zbl 0221.46040
[26] Diestel, J.; Fourie, J.; Swart, J., The Metric Theory of Tensor Products - Grothendieck’s Résumé Revisited (2008), American Mathematical Society · Zbl 1186.46004
[27] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely Summing Operators (1995), Cambridge University Press · Zbl 0855.47016
[28] Dimant, V., Strongly \(p\)-summing multilinear mappings, J. Math. Anal. Appl., 278, 182-193 (2003) · Zbl 1043.47018
[29] Dineen, S., Complex Analysis on Infinite Dimensional Spaces (1999), Springer-Verlag · Zbl 1034.46504
[30] Dubinsky, E.; Pełczyński, A.; Rosenthal, H. P., On Banach spaces \(X\) for which \(\Pi_2(L_\infty, X) = B(L_\infty, X)\), Studia Math., 44, 617-648 (1972) · Zbl 0262.46018
[31] Dvoretzky, A.; Rogers, C. A., Absolute and unconditional convergence in normed linear spaces, Proc. Natl. Acad. Sci. USA, 36, 192-197 (1950) · Zbl 0036.36303
[32] Farmer, J.; Johnson, W. B., Lipschitz \(p\)-summing operators, Proc. Amer. Math. Soc., 137, 2989-2995 (2009) · Zbl 1183.46020
[34] Grothendieck, A., Résumé de la théorie metrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo, 8, 1-79 (1953/1956) · Zbl 0074.32303
[35] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Acad. Math. Soc., 16 (1955) · Zbl 0123.30301
[36] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities (1952), Cambridge University Press · Zbl 0047.05302
[37] Hoffmann-Jørgensen, J., Sums of independent Banach space valued random variables, Studia Math., 52, 159-186 (1974) · Zbl 0265.60005
[38] Jarchow, H.; Palazuelos, C.; Pérez-García, D.; Villanueva, I., Hahn-Banach extension of multilinear forms and summability, J. Math. Anal. Appl., 336, 1161-1177 (2007) · Zbl 1161.46025
[39] Junek, H.; Matos, M. C.; Pellegrino, D., Inclusion theorems for absolutely summing holomorphic mappings, Proc. Amer. Math. Soc., 136, 3983-3991 (2008) · Zbl 1157.46023
[40] Kühn, T.; Mastyło, M., Products of operator ideals and extensions of Schatten classes, Math. Nachr., 283, 891-901 (2010) · Zbl 1192.47067
[41] Kühn, T.; Mastyło, M., Weyl numbers and eigenvalues of abstract summing operators, J. Math. Anal. Appl., 369, 408-422 (2010) · Zbl 1190.47023
[42] Kwapień, S., Some remarks on \((p, q)\)-summing operators in \(l_p\) spaces, Studia Math., 29, 327-337 (1968) · Zbl 0182.17001
[43] Kwapień, S., Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math., 44, 583-595 (1972) · Zbl 0256.46024
[44] Lindenstrauss, J.; Pełczyński, A., Absolutely summing operators in \(L_p\) spaces and their applications, Studia Math., 29, 275-326 (1968) · Zbl 0183.40501
[45] Littlewood, J. E., On bounded bilinear forms in an infinite number of variables, Quart. J. Oxford Ser., 1, 164-174 (1930) · JFM 56.0335.01
[46] Macphail, M. S., Absolute and unconditional convergence, Bull. Amer. Math. Soc., 53, 121-123 (1947) · Zbl 0032.35702
[47] Martínez-Giménez, F.; Sánchez-Pérez, E. A., Vector measure range duality and factorizations of \((D, p)\)-summing operators from Banach function spaces, Bull. Braz. Math. Soc. (N.S.), 35, 51-69 (2004) · Zbl 1068.46025
[48] Matos, M. C., Absolutely summing holomorphic mappings, An. Acad. Brasil. Cienc., 68, 1-13 (1996) · Zbl 0854.46042
[49] Matos, M. C., Fully absolutely summing mappings and Hilbert Schmidt operators, Collect. Math., 54, 111-136 (2003) · Zbl 1078.46031
[50] Matos, M. C., Nonlinear absolutely summing multilinear mappings between Banach spaces, Math. Nachr., 258, 71-89 (2003) · Zbl 1042.47041
[51] Matos, M. C.; Pellegrino, D., Fully summing mappings between Banach spaces, Studia Math., 178, 47-61 (2007) · Zbl 1117.46052
[52] Mauldin, R. D., The Scottish Book (1982), Birkhäuser
[53] Maurey, B.; Pisier, G., Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math., 58, 45-90 (1976) · Zbl 0344.47014
[55] Mujica, J., Complex Analysis in Banach Spaces, North-Holland Math. Stud., vol. 120 (1986), North-Holland
[56] Mujica, X., \( \tau(p; q)\)-summing mappings and the domination theorem, Port. Math., 65, 221-226 (2008) · Zbl 1152.46035
[57] Pellegrino, D., Cotype and absolutely summing homogeneous polynomials in \(L_p\) spaces, Studia Math., 157, 121-131 (2003) · Zbl 1031.46052
[58] Pellegrino, D.; Santos, J., A general Pietsch Domination Theorem, J. Math. Anal. Appl., 375, 371-374 (2011) · Zbl 1210.47047
[61] Pérez-García, D., The inclusion theorem for multiple summing operators, Studia Math., 165, 275-290 (2004) · Zbl 1064.47057
[63] Peréz-García, D.; Villanueva, I., Multiple summing operators on Banach spaces, J. Math. Anal. Appl., 285, 86-96 (2003) · Zbl 1044.46037
[64] Pérez-García, D.; Wolf, M. M.; Palazuelos, C.; Villanueva, I.; Junge, M., Unbounded violations of tripartite Bell inequalities, Comm. Math. Phys., 279, 455-486 (2008) · Zbl 1157.81008
[65] Pietsch, A., Absolut \(p\)-summierende Abbildungen in normieten Räumen, Studia Math., 27, 333-353 (1967) · Zbl 0156.37903
[66] Pietsch, A., Operator Ideals (1980), North-Holland · Zbl 0399.47039
[67] Pietsch, A., Ideals of multilinear functionals, (Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics (1983), Teubner-Texte: Teubner-Texte Leipzig), 185-199
[68] Pietsch, A., History of Banach Spaces and Linear Operators (2007), Birkhäuser · Zbl 1121.46002
[69] Rosenthal, H. P., On subspaces of \(L_p\), Ann. of Math., 97, 344-373 (1973) · Zbl 0253.46049
[70] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math. (2002), Springer-Verlag · Zbl 1090.46001
[71] Talagrand, M., Cotype and \((q, 1)\)-summing norms in Banach spaces, Invent. Math., 110, 545-556 (1992) · Zbl 0814.46010
[72] Wojtaszczyk, P., Banach Spaces for Analysts (1991), Cambridge University Press · Zbl 0724.46012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.