×

A simple memristor chaotic circuit with complex dynamics. (English) Zbl 1248.34060

Summary: A simple memristor-based chaotic circuit with an active flux-controlled memristor characterized by a smooth continuous cubic nonlinearity is designed. The proposed chaotic circuit can generate a 2-scroll chaotic attractor on a finite time scale and has an equilibrium set with its stability dependent on the initial state of the memristor. The complex dynamics of the proposed chaotic circuit under different initial state of the memristor are investigated both theoretically and numerically. In particular, some novel transient transition behaviors with different time scales are found in the memristor circuit. Experimental observations based on a universal circuit implementation platform are conducted to partially verify the numerical simulation results.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
94C05 Analytic circuit theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1134/1.1631365 · doi:10.1134/1.1631365
[2] DOI: 10.1049/el.2010.3114 · doi:10.1049/el.2010.3114
[3] Bao B. C., Chinese Phys. B 19 pp 030510–
[4] Bao B. C., Chinese Phys. Lett. 27 pp 070504–
[5] DOI: 10.1142/S0218127408020987 · Zbl 1147.34328 · doi:10.1142/S0218127408020987
[6] DOI: 10.1049/el.2009.3511 · doi:10.1049/el.2009.3511
[7] Biolek Z., Radioengin. 18 pp 210–
[8] DOI: 10.1049/el.2010.2309 · doi:10.1049/el.2010.2309
[9] DOI: 10.1049/el.2010.0358 · doi:10.1049/el.2010.0358
[10] DOI: 10.1007/s11071-009-9558-0 · Zbl 1183.70049 · doi:10.1007/s11071-009-9558-0
[11] DOI: 10.1109/TCT.1971.1083337 · doi:10.1109/TCT.1971.1083337
[12] DOI: 10.1109/PROC.1976.10092 · doi:10.1109/PROC.1976.10092
[13] Dhamala M., Phys. Rev. E 61 pp 055207–
[14] DOI: 10.1109/LED.2009.2021418 · doi:10.1109/LED.2009.2021418
[15] DOI: 10.1142/S0218127408022354 · Zbl 1165.94300 · doi:10.1142/S0218127408022354
[16] DOI: 10.1142/S0218127409025031 · Zbl 1182.37014 · doi:10.1142/S0218127409025031
[17] DOI: 10.1088/0143-0807/30/4/001 · Zbl 1173.78314 · doi:10.1088/0143-0807/30/4/001
[18] DOI: 10.1049/el:20081820 · doi:10.1049/el:20081820
[19] Muthuswamy B., IETE Techn. Rev. 26 pp 415–
[20] DOI: 10.1142/S0218127410026514 · Zbl 1193.94082 · doi:10.1142/S0218127410026514
[21] DOI: 10.1142/S0218127410027076 · doi:10.1142/S0218127410027076
[22] DOI: 10.1049/el.2010.2830 · doi:10.1049/el.2010.2830
[23] DOI: 10.1109/TCSII.2010.2041816 · doi:10.1109/TCSII.2010.2041816
[24] DOI: 10.1038/nature06932 · doi:10.1038/nature06932
[25] DOI: 10.1109/JPROC.2009.2021077 · doi:10.1109/JPROC.2009.2021077
[26] DOI: 10.1109/LED.2008.2012270 · doi:10.1109/LED.2008.2012270
[27] DOI: 10.1049/el.2009.2174 · doi:10.1049/el.2009.2174
[28] DOI: 10.1049/el.2009.0123 · doi:10.1049/el.2009.0123
[29] DOI: 10.1038/nnano.2008.160 · doi:10.1038/nnano.2008.160
[30] DOI: 10.1007/BF01011469 · doi:10.1007/BF01011469
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.