×

Stability for a class of nonlinear time-delay systems via Hamiltonian functional method. (English) Zbl 1245.93061

Summary: This paper investigates the stability of a class of nonlinear time-delay systems via the Hamiltonian functional method, and proposes a number of new results on generalized Hamiltonian realization (GHR) and stability analysis for this class of systems. Firstly, the concept of GHR of general nonlinear time-delay systems is proposed and several new GHR methods are given. Then, based on the obtained GHR methods, the stability of time-delay systems is investigated and several delay-dependent sufficient conditions in term of matrix inequalities are derived for the stability analysis by constructing suitable Lyapunov-Krasovskii (L-K) functionals. Finally, an illustrative example shows that the results obtained in this paper have less conservatism and work very well in the stability analysis of some nonlinear time-delay Hamiltonian systems.

MSC:

93C15 Control/observation systems governed by ordinary differential equations
93D99 Stability of control systems
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Gu K, Kharitonov V L, Chen J. Stability of Time-Delay Systems. Berlin: Springer, 2003. 322–323 · Zbl 1039.34067
[2] Richard J P. Time-delay systems: an overview of some recent advances and open problems. Autom, 2003, 39: 1667–1694 · Zbl 1145.93302 · doi:10.1016/S0005-1098(03)00167-5
[3] Bagchi A. A martingale approach to state estimation in delay-differential systems. J Math Anal Appl, 1976, 56: 195–210 · Zbl 0339.60037 · doi:10.1016/0022-247X(76)90017-2
[4] Boyd S, Ghaoui L E, Feron E, et al. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994. 23–24 · Zbl 0816.93004
[5] Briggs M, Vinter R. Linear filtering for time-delay systems. IMA J Math Contr Inf, 1989, 6: 167–178 · Zbl 0678.93061 · doi:10.1093/imamci/6.2.167
[6] Han Q. On stability of linear neutral systems with mixed time delays: A discretized Lyapunov functional approach. Autom, 2005, 41: 1209–1218 · Zbl 1091.34041 · doi:10.1016/j.automatica.2005.01.014
[7] He Y, Wu M, She J, et al. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE Trans Autom Contr, 2004, 49: 828–832 · Zbl 1365.93368 · doi:10.1109/TAC.2004.828317
[8] Jiang Z, Gui W, Xie Y, et al. Delay-dependent stabilization of singular linear time delay systems based on memory state feedback control. In: Proceedings of the 27th Chinese Control Conference, Kunming, 2008. 767–771
[9] Kharitonov V, Mondié S, Collado J. Exponential estimates for neutral time-delay systems: an LMI approach. IEEE Trans Autom Contr, 2005, 50: 666–670 · Zbl 1365.93350 · doi:10.1109/TAC.2005.846595
[10] Park P. A delay-dependent stability criterion for system with uncertain time-invairiant delay. IEEE Trans Autom Contr, 1999, 44: 876–877 · Zbl 0957.34069 · doi:10.1109/9.754838
[11] Wu M, Liu F, Shi P, et al. Exponential stability analysis for neural networks with time-varying delay. IEEE Trans Syst, Man Cybernetics, 2008, 38: 1152–1156 · doi:10.1109/TSMCB.2008.915652
[12] Xu S, Lam J. Improved delay-dependent stability criteria for time-delay systems. IEEE Trans Autom Contr, 2005, 50: 384–387 · Zbl 1365.93376 · doi:10.1109/TAC.2005.843873
[13] Cao Y, Frank P M. Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models. Fuzzy Sets Syst, 2001, 124: 213–229 · Zbl 1002.93051 · doi:10.1016/S0165-0114(00)00120-2
[14] Coutinho D F, De Souza C E. Delay-dependent robust stability and L2-gain analysis of a class of nonlinear time-delay systems. Autom, 2008, 44: 2006–2018 · Zbl 1283.93219 · doi:10.1016/j.automatica.2008.01.003
[15] Fridman E, Dambrine M, Yeganefar N. On input-to-state stability of systems with time-delay: A matrix inequalities approach. Autom, 2008, 44: 2364–2369 · Zbl 1153.93502 · doi:10.1016/j.automatica.2008.01.012
[16] Nguang S K. Robust stabilization of a class of time-delay nonlinear systems. IEEE Trans Autom Contr, 2000, 45: 756–762 · Zbl 0978.93067 · doi:10.1109/9.847117
[17] Papachristodoulou A. Analysis of nonlinear time-delay systems using the sum of squares decomposition. In: American Control Conference, Boston, 2004. 4153–4158
[18] Gong Q, Zhang H, Song C, et al. Disturbance decoupling control for a class of nonlinear time-delay systems. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, 2006. 878–882
[19] Jiao X, Shen T. Adaptive feedback control of nonlinear time-delay systems: the Lasalle-Razumikhin-based approach. IEEE Trans Autom Contr, 2005, 50: 1909–1913 · Zbl 1365.93185 · doi:10.1109/TAC.2005.854652
[20] Mazenc F, Bliman P. Backstepping design for time-delay nonlinear systems. IEEE Trans Autom Contr, 2006, 51: 149–154 · Zbl 1366.93211 · doi:10.1109/TAC.2005.861701
[21] Wu W. Robust linearizing controllers for nonlinear time-delay systems. IEEE Proc Control Theory Appl, 1999, 146: 91–97 · doi:10.1049/ip-cta:19990377
[22] Zemouche A, Boutayeb M, Bara G I. On observers design for nonlinear time-delay systems. In: Proceedings of the 2006 American Contral Conference, Minnesota, 2006. 14–16
[23] Melchor-Aguilar D, Niculescu S I. Estimates of the attraction region for a class of nonlinear time delay systems. IMA J Math Contr Inf, 2007, 24: 523–550 · Zbl 1133.93026 · doi:10.1093/imamci/dnm007
[24] Maschke B M, Van Der Schaft A J. Port-controlled Hamiltonian systems: Modelling origins and system theoretic properties. In: Proceedings of the 2nd IFAC symposium on Nonlinear Control Systems Design, Bordeaux, 1992. 282–288
[25] Van Der Schaft A J, Maschke B M. The Hamiltonian formulation of energy conserving physical systems with external ports. Archive für Elektronik und Übertragungstechnik, 1995, 49: 362–371
[26] Escobar G, Vander Schaft A J, Ortega R. A Hamiltonian viewpoint in the modeling of switching power converters. Autom, 1999, 35: 445–452 · Zbl 0930.94052 · doi:10.1016/S0005-1098(98)00196-4
[27] Ortega R, Van Der Schaft A J, Maschke B M, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Autom, 2002, 38: 585–596 · Zbl 1009.93063 · doi:10.1016/S0005-1098(01)00278-3
[28] Wang Y, Li C, Cheng D. Generalized Hamiltonian realization of time-invariant nonlinear systems. Autom, 2003, 39: 1437–1443 · Zbl 1041.93014 · doi:10.1016/S0005-1098(03)00132-8
[29] Cheng D, Xi Z. Energy-based stabilization of forced Hamiltonian systems with its application to power systems. In: Proceedings of the 14th IFAC World Congress, Beijing, 1999. 297–303
[30] Xi Z, Cheng D. Nonlinear decentralized controller design for multi-machine power systems using Hamiltonian function method. Autom, 2002, 38: 527–534 · Zbl 1038.93070 · doi:10.1016/S0005-1098(01)00233-3
[31] Wang Y, Feng G, Cheng D, et al. Adaptive L 2 disturbance attenuation control of multi-machine power systems with SMES units. Autom, 2006, 42: 1121–1132 · Zbl 1134.93388 · doi:10.1016/j.automatica.2006.03.014
[32] Pasumarthy R, Kao C Y. On stability of time-delay Hamiltonian systems analysis. In: American Control Conference, Hyatt Regen, 2009. 4909–4914
[33] Sun W, Wang Y. Stability analysis for some class of time-delay nonlinear Hamiltonian systems. J Shandong University (Nat Sci), 2007, 42: 1–9 · Zbl 1174.93671
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.