×

Exact solutions of the Swift-Hohenberg equation with dispersion. (English) Zbl 1245.35095

Summary: The Swift-Hohenberg equation with dispersion is considered. Traveling wave solutions of the Swift-Hohenberg equation with dispersion are presented. The classification of these solutions is given. It is shown that the Swift-Hohenberg equation without dispersion has only a stationary meromorphic solution.

MSC:

35Q35 PDEs in connection with fluid mechanics
35C07 Traveling wave solutions
34M05 Entire and meromorphic solutions to ordinary differential equations in the complex domain
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Swift, J.; Hohenberg, P. C., Hydrodynamic fluctuations at the convective instability, Phys Rev A, 15, 319-328 (1977)
[2] Aranson, I. S.; Gorshkov, K. A.; Lomov, A. S.; Rabinovich, M. I., Stable particle-like solutions of multidimensional nonlinear fields, Phys D, 43, 435-453 (1990) · Zbl 0719.35074
[3] Pomeau, Y.; Zaleski, S., Dislocation motion in cellular structures, J Phys, 42, 2710-2726 (1981)
[4] Glebsky, L. Yu.; Lerman, L. M., On small stationary localized solutions for the generalized 1-D Swift-Hohenberg equation, CHAOS, 5, 424-431 (1995) · Zbl 0952.37021
[5] Burke, J.; Houghton, S. M.; Knobloch, E., Swift-Hohenberg equation with broken reflection symmetry, Phys Rev E, 80 (2009), 036202
[6] Demina, M. V.; Kudryashov, N. A., Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations, Commun Nonlinear Sci Numer Simulat, 16, 1127-1134 (2011) · Zbl 1221.34233
[7] Demina, M. V.; Kudryashov, N. A., From Laurent series to exact meromorphic solutions: The Kawahara equation, Phys Lett A, 374, 4023-4029 (2010) · Zbl 1238.34020
[8] Kudryashov, N. A., Exact soliton solutions of the generalized evolution equation of wave dynamics, J Appl Math Mech, 52, 361-365 (1988)
[9] Kudryashov, N. A., Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys Lett A, 147, 287-291 (1990)
[10] Kudryashov, N. A., Exact solutions of the non-linear wave equations arising in mechanics, J Appl Math Mech, 54, 372-375 (1990) · Zbl 0736.76009
[11] Kudryashov, N. A., Partial differential equations with solutions having movable first – order singularities, Phys Lett A, 169, 237-242 (1992)
[12] Parkes, E. J.; Duffy, B. R., An automated tan \(h\)-function method for finding solitary wave solutions to non-linear evolution equations, Comput Phys Commun, 98, 288-300 (1996) · Zbl 0948.76595
[13] Fan, E., Extended tanh-function method and its applications to nonlinear equations, Phys Lett A, 277, 212-218 (2000) · Zbl 1167.35331
[14] Fu, Z.; Liu, S.; Liu, S., New transformations and new approach to find exact solutions to nonlinear equations, Phys Lett A, 299, 507-512 (2002) · Zbl 0996.35044
[15] Parkes, E. J.; Duffy, B. R.; Abbott, P. C., The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations, Phys Lett A, 295, 280-286 (2002) · Zbl 1052.35143
[16] Kudryashov, N. A., Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Soliton Fract, 24, 1217-1231 (2005) · Zbl 1069.35018
[17] Polyanin, A. D.; Zaitsev, V. F.; Zhyrov, A. I., Methods of nonlinear equations of mathematical physics and mechanics (2005), Fizmatlit: Fizmatlit Moscow, 260 P
[18] Vernov, S. Yu., Proof of the absence of elliptic solutions of the cubic complex Ginzburg-Landau equation, Theor Math Phys, 146, 131-139 (2006) · Zbl 1177.35232
[19] Biswas, A., Solitary wave solution for the generalized Kawahara equation, Appl Math Lett, 22, 208-210 (2009) · Zbl 1163.35468
[20] Kudryashov, N. A.; Loguinova, N. B., Extended simplest equation method for nonlinear differential equations, Appl Math Comput, 205, 396-402 (2008) · Zbl 1168.34003
[21] Kudryashov, N. A., Seven common errors in finding exact solutions of nonlinear differential equations, Commun Nonlinear Sci Numer Simulat, 14, 3507-3529 (2009) · Zbl 1221.35342
[22] Vitanov, N. K., Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity, Commun Nonlinear Sci Numer Simulat, 15, 2050-2060 (2010) · Zbl 1222.35062
[23] Kudryashov, N. A., Meromorphic solutions of nonlinear ordinary differential equations, Commun Nonlinear Sci Numer Simulat, 15, 2778-2790 (2010) · Zbl 1222.35160
[24] Kudryashov, N. A.; Sinelshchikov, D. I.; Demina, M. V., Exact solutions of the generalized Bretherton equation, Phys Lett A, 375, 1074-1079 (2011) · Zbl 1242.37054
[25] Abramowitz, M.; Stegun, I. A., Handbook of mathematical functions: with formulas, graphs and mathematical tables (1965), Dover Publications, 1046 P · Zbl 0515.33001
[26] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J Comput Phys, 176, 430-455 (2002) · Zbl 1005.65069
[27] Kassam, A.; Trefethen, L. N., Fourth-order time stepping for stiff PDEs, SIAM J Sci Comput, 26, 1214-1233 (2005) · Zbl 1077.65105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.