×

Mathematical and dynamic analysis of a prey-predator model in the presence of alternative prey with impulsive state feedback control. (English) Zbl 1244.92052

Summary: The dynamic complexities of a prey-predator system in the presence of alternative prey with impulsive state feedback control are studied analytically and numerically. By using the analogue of the Poincaré criterion, sufficient conditions for the existence and stability of semitrivial periodic solutions can be obtained. Furthermore, the corresponding bifurcation diagrams and phase diagrams are investigated by means of numerical simulations which illustrate the feasibility of the main results.

MSC:

92D40 Ecology
93B52 Feedback control
37N25 Dynamical systems in biology
34C60 Qualitative investigation and simulation of ordinary differential equation models
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. R. Jiang and Q. S. Lu, “Impulsive state feedback control of a predator-prey model,” Journal of Computational and Applied Mathematics, vol. 200, no. 1, pp. 193-207, 2007. · Zbl 1134.49024 · doi:10.1016/j.cam.2005.12.013
[2] L. Nie, Z. Teng, L. Hu, and J. Peng, “The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator,” BioSystems, vol. 98, no. 2, pp. 67-72, 2009. · doi:10.1016/j.biosystems.2009.06.001
[3] V. Lakshmikantham, D. D. Baĭnov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. · Zbl 0719.34002
[4] H. Yu, S. Zhong, R. P. Agarwal, and S. K. Sen, “Three-species food web model with impulsive control strategy and chaos,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 2, pp. 1002-1013, 2011. · Zbl 1221.34039 · doi:10.1016/j.cnsns.2010.05.014
[5] W. B. Wang, J. H. Shen, and J. J. Nieto, “Permanence and periodic solution of predator-prey system with holling type functional response and impulses,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 81756, 15 pages, 2007. · Zbl 1146.37370 · doi:10.1155/2007/81756
[6] H. Yu, S. Zhong, and R. P. Agarwal, “Mathematics and dynamic analysis of an apparent competition community model with impulsive effect,” Mathematical and Computer Modelling, vol. 52, no. 1-2, pp. 25-36, 2010. · Zbl 1201.34018 · doi:10.1016/j.mcm.2009.11.019
[7] R. Q. Shi and L. S. Chen, “Stage-structured impulsive SI model for pest management,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 97608, 11 pages, 2007. · Zbl 1146.37368 · doi:10.1155/2007/97608
[8] H. Yu, S. Zhong, R. P. Agarwal, and S. K. Sen, “Effect of seasonality on the dynamical behavior of an ecological system with impulsive control strategy,” Journal of the Franklin Institute, vol. 348, no. 4, pp. 652-670, 2011. · Zbl 1221.34130 · doi:10.1016/j.jfranklin.2011.01.009
[9] C. J. Wei and L. S. Chen, “A delayed epidemic model with pulse vaccination,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 746951, 12 pages, 2008. · Zbl 1149.92329 · doi:10.1155/2008/746951
[10] H. Yu, S. Zhong, R. P. Agarwal, and L. Xiong, “Species permanence and dynamical behavior analysis of an impulsively controlled ecological system with distributed time delay,” Computers & Mathematics with Applications, vol. 59, no. 12, pp. 3824-3835, 2010. · Zbl 1198.34171 · doi:10.1016/j.camwa.2010.04.018
[11] H. Yu, S. Zhong, and R. P. Agarwal, “Mathematics analysis and chaos in an ecological model with an impulsive control strategy,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 2, pp. 776-786, 2011. · Zbl 1221.37207 · doi:10.1016/j.cnsns.2010.04.017
[12] Z. Teng, L. Nie, and X. Fang, “The periodic solutions for general periodic impulsive population systems of functional differential equations and its applications,” Computers & Mathematics with Applications, vol. 61, no. 9, pp. 2690-2703, 2011. · Zbl 1221.34181 · doi:10.1016/j.camwa.2011.03.023
[13] S. Lv and M. Zhao, “The dynamic complexity of a three species food chain model,” Chaos, Solitons and Fractals, vol. 37, no. 5, pp. 1469-1480, 2008. · Zbl 1142.92342 · doi:10.1016/j.chaos.2006.10.057
[14] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42, Springer, New York, NY, USA, 1983. · Zbl 0515.34001
[15] L. Zhang and M. Zhao, “Dynamic complexities in a hyperparasitic system with prolonged diapause for host,” Chaos, Solitons and Fractals, vol. 42, no. 2, pp. 1136-1142, 2009. · Zbl 05813506 · doi:10.1016/j.chaos.2009.03.007
[16] R. I. Leine, D. H. Van Campen, and B. L. Van De Vrande, “Bifurcations in nonlinear discontinuous systems,” Nonlinear Dynamics, vol. 23, no. 2, pp. 105-164, 2000. · Zbl 0980.70018 · doi:10.1023/A:1008384928636
[17] M. Zhao, L. Zhang, and J. Zhu, “Dynamics of a host-parasitoid model with prolonged diapause for parasitoid,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 1, pp. 455-462, 2011. · Zbl 1221.37208 · doi:10.1016/j.cnsns.2010.03.011
[18] M. Zhao and S. Lv, “Chaos in a three-species food chain model with a Beddington-DeAngelis functional response,” Chaos, Solitons and Fractals, vol. 40, no. 5, pp. 2305-2316, 2009. · Zbl 1198.37139 · doi:10.1016/j.chaos.2007.10.025
[19] A. Lakmeche and O. Arino, “Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment,” Dynamics of Continuous, Discrete and Impulsive Systems, vol. 7, no. 2, pp. 265-287, 2000. · Zbl 1011.34031
[20] S. Y. Tang and L. S. Chen, “Density-dependent birth rate, birth pulses and their population dynamic consequences,” Journal of Mathematical Biology, vol. 44, no. 2, pp. 185-199, 2002. · Zbl 0990.92033 · doi:10.1007/s002850100121
[21] G. Zeng, L. Chen, and L. Sun, “Existence of periodic solution of order one of planar impulsive autonomous system,” Journal of Computational and Applied Mathematics, vol. 186, no. 2, pp. 466-481, 2006. · Zbl 1088.34040 · doi:10.1016/j.cam.2005.03.003
[22] L. Nie, Z. Teng, L. Hu, and J. Peng, “Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects,” Nonlinear Analysis, vol. 11, no. 3, pp. 1364-1373, 2010. · Zbl 1228.37058 · doi:10.1016/j.nonrwa.2009.02.026
[23] L. Nie, J. Peng, Z. Teng, and L. Hu, “Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects,” Journal of Computational and Applied Mathematics, vol. 224, no. 2, pp. 544-555, 2009. · Zbl 1162.34007 · doi:10.1016/j.cam.2008.05.041
[24] L. Qian, Q. Lu, Q. Meng, and Z. Feng, “Dynamical behaviors of a prey-predator system with impulsive control,” Journal of Mathematical Analysis and Applications, vol. 363, no. 1, pp. 345-356, 2010. · Zbl 1187.34060 · doi:10.1016/j.jmaa.2009.08.048
[25] S. Y. Tang and L. S. Chen, “Modelling and analysis of integrated pest management strategy,” Discrete and Continuous Dynamical Systems B, vol. 4, no. 3, pp. 761-770, 2004. · Zbl 1114.92074 · doi:10.3934/dcdsb.2004.4.759
[26] S. Y. Tang and R. A. Cheke, “State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences,” Journal of Mathematical Biology, vol. 50, no. 3, pp. 257-292, 2005. · Zbl 1080.92067 · doi:10.1007/s00285-004-0290-6
[27] T. K. Kar and S. K. Chattopadhyay, “A focus on long-run sustainability of a harvested prey predator system in the presence of alternative prey,” Comptes Rendus, vol. 333, no. 11-12, pp. 841-849, 2010. · doi:10.1016/j.crvi.2010.09.001
[28] G. R. Jiang, Q. S. Lu, and L. M. Qian, “Complex dynamics of a Holling type II prey-predator system with state feedback control,” Chaos, Solitons and Fractals, vol. 31, no. 2, pp. 448-461, 2007. · Zbl 1203.34071 · doi:10.1016/j.chaos.2005.09.077
[29] P. S. Simeonov and D. D. Baĭnov, “Orbital stability of periodic solutions of autonomous systems with impulse effect,” International Journal of Systems Science, vol. 19, no. 12, pp. 2561-2585, 1988. · Zbl 0669.34044 · doi:10.1080/00207728808547133
[30] S. N. Rasband, Chaotic Dynamics of Nonlinear Systems, John Wiley & Sons, New York, NY, USA, 1990. · Zbl 0691.58004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.