×

Biomolecular surface construction by PDE transform. (English) Zbl 1244.92024

Summary: This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform.
The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surfaces, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential.
A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiments and comparisons with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes.

MSC:

92C40 Biochemistry, molecular biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65T50 Numerical methods for discrete and fast Fourier transforms
92-08 Computational methods for problems pertaining to biology

Software:

MIBPB; PDB2PQR
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Corey, Molecular models of amino acids, peptides and proteins, Review of Scientific Instruments 24 pp 621– (1953) · doi:10.1063/1.1770803
[2] Chen, Differential geometry based solvation models I: Eulerian formulation, Journal of Computational Physics 229 pp 8231– (2010) · Zbl 1229.92030 · doi:10.1016/j.jcp.2010.06.036
[3] Chen, Differential geometry based solvation models II: Lagrangian formulation, Journal of Mathematical Biology (2011) · Zbl 1284.92025 · doi:10.1007/s00285-011-0402-z
[4] Richards, Areas, volumes, packing, and protein structure, Annual Review of Biophysics and Bioengineering 6 (1) pp 151– (1977) · doi:10.1146/annurev.bb.06.060177.001055
[5] Crowley, Cation-pi interactions in protein-protein interfaces, Proteins: Structure, Function, and Bioinformatics 59 pp 231– (2005) · doi:10.1002/prot.20417
[6] Spolar, Coupling of local folding to site-specific binding of proteins to DNA, Science 263 pp 777– (1994) · doi:10.1126/science.8303294
[7] Kuhn, The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures, Journal of Molecular Biology 228 pp 13– (1992) · doi:10.1016/0022-2836(92)90487-5
[8] Bergstrom, Absorption classification of oral drugs based on molecular surface properties, Journal of Medicinal Chemistry 46 pp 558– (2003) · doi:10.1021/jm020986i
[9] Dragan, DNA binding and bending by hmg boxes: energetic determinants of specificity, Journal of Molecular Biology 343 pp 371– (2004) · doi:10.1016/j.jmb.2004.08.035
[10] Jackson, DNA binding and bending by HMG boxes: energetic determinants of specificity, Journal of Molecular Biology 250 pp 258– (1995) · doi:10.1006/jmbi.1995.0375
[11] LiCata, Functionally linked hydration changes in escherichia coli aspartate transcarbamylase and its catalytic subunit, Biochemistry 36 pp 10161– (1997) · doi:10.1021/bi970669r
[12] Raschke, Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water, Proceedings of the National Academy of Sciences of the United States of America 98 pp 5965– (2001) · doi:10.1073/pnas.111158498
[13] Geng, Multiscale molecular dynamics using the matched interface and boundary method, Journal of Computational Physics 230 (2) pp 435– (2011) · Zbl 1246.82028 · doi:10.1016/j.jcp.2010.09.031
[14] Chen, Quantum dynamics in continuum for proton transport I: basic formulation, Communications in Computational Physics (2011) · Zbl 1373.78069 · doi:10.4208/cicp.121209.111010s
[15] Zheng, Second-order Poisson-Nernst-Planck solver for ion transport, Journal of Computational Physics 230 pp 5239– (2011) · Zbl 1222.82073 · doi:10.1016/j.jcp.2011.03.020
[16] Zheng, Poisson-Boltzmann-Nernst-Planck model, Journal of Chemical Physics 134 pp 194101– (2011) · doi:10.1063/1.3581031
[17] Connolly, Depth buffer algorithms for molecular modeling, Journal of Molecular Graphics 3 pp 19– (1985) · doi:10.1016/0263-7855(85)80009-6
[18] Eisenhaber, Improved strategy in analytic surface calculation for molecular systems: handling of singularities and computational efficiency, Journal of Computational Chemistry 14 pp 1272– (1993) · doi:10.1002/jcc.540141103
[19] Gogonea, Implementation of solvent effect in molecular mechanics. 1. Model development and analytical algorithm for the solvent - accessible surface area, Supramolecular Chemistry 3 pp 303– (1994) · doi:10.1080/10610279408034930
[20] Sanner, Reduced surface: an efficient way to compute molecular surfaces, Biopolymers 38 pp 305– (1996) · doi:10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
[21] Yu, Feature-preserving adaptive mesh generation for molecular shape modeling and simulation, Journal of Molecular Graphics and Modeling 26 pp 1370– (2008) · doi:10.1016/j.jmgm.2008.01.007
[22] Wei GW Sun YH Zhou YC Feig M Molecular multiresolution surfaces arXiv:mathph/0511001v1 2005 1 11
[23] Zhang, Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow, Communications in Numerical Methods in Engineering 25 pp 1– (2009) · Zbl 1158.65314 · doi:10.1002/cnm.1067
[24] Zhang, Quality meshing of implicit solvation models of biomolecular structures, Computer Aided Geometric Design 23 (6) pp 510– (2006) · Zbl 1098.92034 · doi:10.1016/j.cagd.2006.01.008
[25] Bates PW Wei GW Zhao S The minimal molecular surface arXiv:q-bio/0610038v1 2006
[26] Bates PW Wei GW Zhao S The minimal molecular surface Midwest Quantitative Biology Conference 2006
[27] Bates, Minimal molecular surfaces and their applications, Journal of Computational Chemistry 29 (3) pp 380– (2008) · Zbl 05430055 · doi:10.1002/jcc.20796
[28] Bates, Geometric and potential driving formation and evolution of biomolecular surfaces, Journal of Mathematical Biology 59 pp 193– (2009) · Zbl 1311.92212 · doi:10.1007/s00285-008-0226-7
[29] Wei, Differential geometry based multiscale models, Bulletin of Mathematical Biology 72 pp 1562– (2010) · Zbl 1198.92001 · doi:10.1007/s11538-010-9511-x
[30] Zheng Q Chen Z Wei GW Variational multiscale models for charge transport I: basic formulation 2011
[31] Chen, Quantum dynamics in continuum for proton transport II: variational solvent-solute intersurface, International Journal for Numerical Methods in Biomedical Engineering (2011)
[32] Willmore, Riemannian Geometry (1997)
[33] Osher, Level set methods: An overview and some recent results, Journal of Computational Physics 169 (2) pp 463– (2001) · Zbl 0988.65093 · doi:10.1006/jcph.2000.6636
[34] Sethian, Evolution, implementation, and application of level set and fast marching methods for advancing fronts, Journal of Computational Physics 169 (2) pp 503– (2001) · Zbl 0988.65095 · doi:10.1006/jcph.2000.6657
[35] Sochen, A general framework for low level vision, IEEE Transactions on Image Processing 7 (3) pp 310– (1998) · Zbl 0973.94502 · doi:10.1109/83.661181
[36] Witkin, Scale-space filtering: a new approach to multi-scale description, Proceedings of IEEE International Conference on Acoustic Speech Signal Processing 9 pp 150– (1984)
[37] Perona, Scale-space and edge-detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (7) pp 629– (1990) · Zbl 05111848 · doi:10.1109/34.56205
[38] Soltanianzadeh, A multidimensional nonlinear edge-preserving filter for magnetic-resonace image-restoration, IEEE Transactions on Image Processing 4 (2) pp 147– (1995) · doi:10.1109/83.342189
[39] Wei, Generalized Perona-Malik equation for image restoration, IEEE Signal Processing Letters 6 (7) pp 165– (1999) · doi:10.1109/97.769359
[40] Wei, Synchronization-based image edge detection, Europhysics Letters 59 (6) pp 814– (2002) · doi:10.1209/epl/i2002-00115-8
[41] Chan, High-order total variation-based image restoration, SIAM Journal on Scientific Computing 22 (2) pp 503– (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[42] Osher, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics 79 (1) pp 12– (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[43] Rudin, Nonlinear total variation based noise removal algorithms, Physica D 60 (1-4) pp 259– (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[44] Mumford, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics 42 (5) pp 577– (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[45] Blomgren, Color TV: total variation methods for restoration of vector-valued images, IEEE Transactions on Image Processing 7 (3) pp 304– (1998) · doi:10.1109/83.661180
[46] Carstensen, Geodesic active contours, International Journal of Computer Vision 22 pp 61– (1997) · Zbl 0894.68131 · doi:10.1023/A:1007979827043
[47] Osher, Feature-oriented image enhancement using shock filters, SIAM Journal on Numerical Analysis 27 (4) pp 919– (1990) · Zbl 0714.65096 · doi:10.1137/0727053
[48] Sapiro, Anisotropic diffusion of multivalued images with applications to color filtering, IEEE Transactions on Image Processing 5 (11) pp 1582– (1996) · doi:10.1109/83.541429
[49] Chambolle, Image recovery via total variation minimization and related problems, Numerische Mathematik 76 (2) pp 167– (1997) · Zbl 0874.68299 · doi:10.1007/s002110050258
[50] Greer, H-1 solutions of a class of fourth order nonlinear equations for image processing, Discrete and Continuous Dynamical Systems 10 (1-2) pp 349– (2004)
[51] Greer, Traveling wave solutions of fourth order PDEs for image processing, SIAM Journal on Mathematical Analysis 36 (1) pp 38– (2004) · Zbl 1082.35080 · doi:10.1137/S0036141003427373
[52] Lysaker, Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time, IEEE Transactions on Image Processing 12 (12) pp 1579– (2003) · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[53] Tasdizen, Geometric surface processing via normal maps, ACM Transactions on Graphics 22 (4) pp 1012– (2003) · Zbl 05457622 · doi:10.1145/944020.944024
[54] You, Fourth-order partial differential equations for noise removal, IEEE Transactions on Image Processing 9 (10) pp 1723– (2002) · Zbl 0962.94011 · doi:10.1109/83.869184
[55] Bertozzi, Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes, Communications on Pure and Applied Mathematics 57 (6) pp 764– (2004) · Zbl 1058.35083 · doi:10.1002/cpa.20019
[56] Xu, Existence and uniqueness of weak solutions for a fourth-order nonlinear parabolic equation, Journal of Mathematical Analysis and Applications 325 (1) pp 636– (2007) · Zbl 1107.35038 · doi:10.1016/j.jmaa.2006.02.024
[57] Jin, Strong solutions for the generalized Perona-Malik equation for image restoration, Nonlinear Analysis-Theory Methods and Applications 73 (4) pp 1077– (2010) · Zbl 1194.35503 · doi:10.1016/j.na.2010.04.039
[58] Witelski, ADI schemes for higher-order nonlinear diffusion equations, Applied Numerical Mathematics 45 (2-3) pp 331– (2003) · Zbl 1061.76051 · doi:10.1016/S0168-9274(02)00194-0
[59] Sun, Evolution-operator-based single-step method for image processing, International Journal of Biomedical Imaging 83847 pp 1– (2006) · doi:10.1155/IJBI/2006/83847
[60] Wang, Iterative filtering decomposition based on local spectral evolution kernel, Journal of Scientific Computing (2011)
[61] Wang, Mode decomposition evolution equations, Journal of Scientific Computing (2011)
[62] Wang, Partial differential equation transform-variational formulation and Fourier analysis, International Journal for Numerical Methods in Biomedical Engineering (2011) · Zbl 1254.94012 · doi:10.1002/cnm.1452
[63] Yang, Comparison of the discrete singular convolution algorithm and the fourier pseudospectral methods for solving partial differential equations, Computer Physics Communications 143 pp 113– (2002) · Zbl 0993.65112 · doi:10.1016/S0010-4655(01)00427-1
[64] Gilboa, Forward-and-backward diffusion processes for adaptive image enhancement and denoising, IEEE Transactions on Image Processing 11 (7) pp 689– (2002) · Zbl 05452961 · doi:10.1109/TIP.2002.800883
[65] Gilboa, Image sharpening by flows based on triple well potentials, Journal of Mathematical Imaging and Vision 20 (1-2) pp 121– (2004) · Zbl 1366.94051 · doi:10.1023/B:JMIV.0000011322.17255.85
[66] Didas, Properties of higher order nonlinear diffusion filtering, Journal of Mathematical Imaging and Vision 35 (3) pp 208– (2009) · Zbl 1490.94011 · doi:10.1007/s10851-009-0166-x
[67] Rudin, Proceedings of the eleventh annual international conference of the Center for Nonlinear Studies on Experimental mathematics : computational issues in nonlinear science pp 259– (1992)
[68] Giard, Molecular surface mesh generation by filtering electron density map, International Journal of Biomedical Imaging 2010 (923780) pp 9– (2010)
[69] Zhang, On the origin and completeness of highly likely single domain protein structures, Proceedings of the National Academy of Sciences of the United States of America 103 pp 2605– (2006) · doi:10.1073/pnas.0509379103
[70] MacKerell Jr, All-atom empirical potential for molecular modeling and dynamics studies of proteins, Journal of Physical Chemistry B 102 (18) pp 3586– (1998) · doi:10.1021/jp973084f
[71] Dolinsky, PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Research 32 (S2) pp W665-W667– (2004)
[72] Zhou, Highly accurate biomolecular electrostatics in continuum dielectric environments, Journal of Computational Chemistry 29 pp 87– (2008) · Zbl 05430164 · doi:10.1002/jcc.20769
[73] Geng, Treatment of charge singularities in implicit solvent models, Journal of Chemical Physics 127 pp 114106– (2007) · doi:10.1063/1.2768064
[74] Bhat, Molecular surface generation using a variable-radius solvent probe, Proteins: Structure, Function, and Bioinformatics 62 pp 244– (2006) · doi:10.1002/prot.20682
[75] Chen, MIBPB: a software package for electrostatic analysis, Journal of Computational Chemistry 32 pp 657– (2011) · Zbl 05891591 · doi:10.1002/jcc.21646
[76] Yu, Treatment of geometric singularities in implicit solvent models, Journal of Chemical Physics 126 pp 244108– (2007) · doi:10.1063/1.2743020
[77] Chern, Accurate evaluation of electrostatics for macromolecules in solution, Methods and Applications of Analysis 10 (2) pp 309– (2003) · Zbl 1099.92500 · doi:10.4310/MAA.2003.v10.n2.a9
[78] Yu, Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities, Journal of Computational Physics 227 pp 602– (2007) · Zbl 1128.65103 · doi:10.1016/j.jcp.2007.08.003
[79] Yu, Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces, Journal of Computational Physics 224 (2) pp 729– (2007) · Zbl 1120.65333 · doi:10.1016/j.jcp.2006.10.030
[80] Zhao, High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces, Journal of Computational Physics 200 (1) pp 60– (2004) · Zbl 1050.78018 · doi:10.1016/j.jcp.2004.03.008
[81] Zhou, On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method, Journal of Computational Physics 219 (1) pp 228– (2006) · Zbl 1105.65108 · doi:10.1016/j.jcp.2006.03.027
[82] Zhou, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, Journal of Computational Physics 213 (1) pp 1– (2006) · Zbl 1089.65117 · doi:10.1016/j.jcp.2005.07.022
[83] Chen, Differential geometry based multiscale models for virus formation and evolution, International Journal of Biomedical Imaging 2010 (308627) pp 1– (2010) · doi:10.1155/2010/308627
[84] Lawson, Representation of viruses in the remediated PDB archive, Acta Crystallographica Section D- Biological Crystalography 64 pp 874– (2008) · doi:10.1107/S0907444908017393
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.