×

A Daubechies wavelet-based method for elastic problems. (English) Zbl 1244.74225

Summary: The Daubechies (DB) wavelet is used for solution of 2-D plain elastic problems. Because the DB wavelet scaling functions are directly used in function approximation, either nodes nor meshes are needed in this method. Using the ideas of some meshless methods, the solution formulations for two-dimensional elastic problems are established. In order to treat general boundaries and improve the effciency and accruracy in solution, a method for evaluation of integrals is proposed. Numerical examples of 2-D elastic problems illustrate that this method is effective and stable and it is promising to solve more complicated problems in solid mechanics.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74B05 Classical linear elasticity
65T60 Numerical methods for wavelets
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method diffuse approximation and diffuse elements, Comput Mech, 10, 307-318 (1992) · Zbl 0764.65068
[2] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229-256 (1994) · Zbl 0796.73077
[3] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent development, Comput Methods Appl Mech Eng, 139, 3-47 (1996) · Zbl 0891.73075
[4] Liu, G. R.; Gu, Y. T., A point interpolation method for two-dimensional solids, Int J Numer Methods Eng, 50, 937-951 (2001) · Zbl 1050.74057
[5] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 117-127 (1998) · Zbl 0932.76067
[6] Liu, G. R.; Gu, Y. T., Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches, Comput Mech, 26, 536-546 (2000) · Zbl 0990.74070
[7] Ko, J.; Kurdila, A. J.; Pilant, M. S., A class of finite element methods based on orthonormal compactly supported wavelets, Comput Mech, 16, 235-244 (1995) · Zbl 0830.65084
[8] Ma, J.; Xue, J.; Yang, S.; He, Z., A study of the construction and application of a Daubechies wavelet-based beam element, Finite Elem Anal Des, 39, 965-975 (2003)
[9] Kurdila, A. J.; Sun, T.; Grama, P., A fine fractal interpolation functions and wavelet-based finite elements, Comput Mech, 17, 169-185 (1995) · Zbl 0841.73065
[10] Han, J. G.; Ren, W. X.; Huang, Y., A spline wavelet finite-element method in structural mechanics, Int J Numer Methods Eng, 66, 166-190 (2006) · Zbl 1110.74851
[11] Bertoluzza, S.; Naldi, G., A wavelet collocation method for the numerical solution of partial differential equations, Appl Comput Harmon Anal, 3, 1-9 (1996) · Zbl 0853.65122
[12] Vasilyev, O. V.; Paolucci, S.; Sen, M., A multilevel wavelet collocation method for solving partial differential equations in a finite domain, J Comput Phys, 120, 33-47 (1995) · Zbl 0837.65113
[13] Oleg, V.; Samuel, P. A., Dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain, J Comput Phys, 125, 498-512 (1996) · Zbl 0847.65073
[14] Vasilyev, V. O.; Nicholas, K. R., Kevlahan, an adaptive multilevel wavelet collocation method for elliptic problems, J Comput Phys, 206, 412-431 (2005) · Zbl 1070.65122
[15] Zhou, Y. H.; Zhou, J., A modified wavelet approximation for multi-resolution AWCM in simulating nonlinear vibration of MDOF systems, Comput Methods Appl Mech Eng, 197, 1466-1478 (2008) · Zbl 1194.70006
[16] Amaratunga, K.; Williams, J. R., Wavelet-Galerkin solutions for one dimensional partial differential equation, Int J Numer Methods Eng, 37, 16, 2703-2716 (1994) · Zbl 0813.65106
[17] Amaratunga, K.; Williams, J. R., Wavelet-Galerkin solutions of boundary value problems, Arch Comput Methods Eng, 4, 243-285 (1997)
[18] Diaz, A. R., A wavelet-Galerkin scheme for analysis of large-scale problems on simple domains, Int J Numer Methods Eng, 44, 1599-1616 (1999) · Zbl 0932.74077
[19] Juan, M. R.; Gary, K., Wavelet-Galerkin discretization of hyperbolic equations, J Comput Phys, 122, 118-128 (1995) · Zbl 0838.65096
[20] Sonia, M.; Elsa, C., Convergence estimates for the Wavelet Galerkin method, SIAM J Numer Anal, 33, 1, 149-161 (1996) · Zbl 0845.65048
[21] Kim, Y. Y.; Jang, G. W., Interpolation wavelet-based multi-scale Galerkin method for thin-walled box beam analysis, Int J Numer Methods Eng, 53, 1575-1592 (2002) · Zbl 1114.74503
[22] Kim, J. E.; Jang, G. W.; Kim, Y. Y., Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its application to multiscale topology design optimization, Int J Solids Structures, 40, 6473-6496 (2003) · Zbl 1057.74029
[23] Jang, G. W.; Kim, J. E.; Kim, Y. Y., Multiscale Galerkin method using interpolation wavelets for two-dimensional elliptic problems in general domains, Int J Numer Methods Eng, 59, 225-253 (2004) · Zbl 1043.65127
[24] Andersson, L.; Hall, N.; Jawerth, B.; Peters, G., Wavelets on closed subsets of the real line, (Schumaker, L. L.; Webb, G., Topics in the theory and applications of wavelets (1993), Academic Press: Academic Press Boston MA), 1-14 · Zbl 0808.42019
[25] Monasse, P.; Perrier, V., Orthonormal wavelet bases adapted for partial differential equations with boundary conditions, SIAM J Math Anal, 29, 4, 1040-1065 (1998) · Zbl 0921.35036
[26] Cohen, A.; Masson, R., Wavelet methods for second-order elliptic problems, preconditioning, and adaptivity, SIAM J Sci Comput, 21, 3, 1006-1026 (1999) · Zbl 0981.65132
[27] Glowinski R, Rieder A, Wells Jr. RO, Zhou X. A wavelet multi-grid preconditioner for Dirichlet boundary value problems in general domains. Technical Report, Computational Mathematics Lab, TR93-06, Rice University, 1993.; Glowinski R, Rieder A, Wells Jr. RO, Zhou X. A wavelet multi-grid preconditioner for Dirichlet boundary value problems in general domains. Technical Report, Computational Mathematics Lab, TR93-06, Rice University, 1993.
[28] Wells Jr. RO, Zhou X. Wavelet solutions for the Dirichlet problem. Technical Report, Computational Mathematics Lab, Rice University, 1993.; Wells Jr. RO, Zhou X. Wavelet solutions for the Dirichlet problem. Technical Report, Computational Mathematics Lab, Rice University, 1993.
[29] Latto A, Resnikoff HK, Tenenbaum E. The evaluation of connection coefficients of compactly supported wavelets. In: Proceedings of the USA-French workshop on wavelets and turbulence, Princeton University, 1991.; Latto A, Resnikoff HK, Tenenbaum E. The evaluation of connection coefficients of compactly supported wavelets. In: Proceedings of the USA-French workshop on wavelets and turbulence, Princeton University, 1991.
[30] Restrepo, J. M.; Leaf, G. K., Inner product computations using periodized Daubechies wavelets, Int J Numer Methods Eng, 40, 3557-3578 (1997) · Zbl 0906.65138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.