×

A hybrid radial boundary node method based on radial basis point interpolation. (English) Zbl 1244.65228

Summary: The hybrid boundary node method (HBNM) retains the meshless attribute of the moving least squares (MLS) approximation and the reduced dimensionality advantages of the boundary element method. However, the HBNM inherits the deficiency of the MLS approximation, in which shape functions lack the delta function property. Thus in the HBNM, boundary conditions are implemented after they are transformed into their approximations on the boundary nodes with the MLS scheme.
This paper combines the hybrid displacement variational formulation and the radial basis point interpolation to develop a direct boundary-type meshless method, the hybrid radial boundary node method (HRBNM) for two-dimensional potential problems. The HRBNM is truly meshless, i.e. absolutely no elements are required either for interpolation or for integration. The radial basis point interpolation is used to construct shape functions with delta function property. So unlike the HBNM, the HRBNM is a direct numerical method in which the basic unknown quantity is the real solution of nodal variables, and boundary conditions can be applied directly and easily, which leads to greater computational precision. Some selected numerical tests illustrate the efficiency of the method proposed.

MSC:

65N99 Numerical methods for partial differential equations, boundary value problems
65D05 Numerical interpolation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M., Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47 (1996) · Zbl 0891.73075
[2] Liu, G. R.; Gu, Y. T., An introduction to meshfree methods and their programming (2005), Springer: Springer Dordrecht
[3] Lancaster, P.; Salkauskas, K., Surface generated by moving least squares methods, Math Comput, 37, 141-158 (1981) · Zbl 0469.41005
[4] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse element, Comput Mech, 10, 307-318 (1992) · Zbl 0764.65068
[5] Belytschko, T.; Lu, Y. Y.; Gu, L., Element free Galerkin methods, Int J Numer Methods Eng, 37, 229-256 (1994) · Zbl 0796.73077
[6] Atluri, S. N.; Shen, S. P., The meshless local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods, Comput Model Eng Sci, 3, 11-51 (2002) · Zbl 0996.65116
[7] Atluri, S. N.; Sladek, J.; Sladek, V.; Zhu, T., The local boundary integral equation (LBIE) and it’s meshless implementation for linear elasticity, Comput Mech, 25, 180-198 (2000) · Zbl 1020.74048
[8] Mukherjee, Y. X.; Mukherjee, S., The boundary node method for potential problems, Int J Numer Methods Eng, 40, 797-815 (1997) · Zbl 0885.65124
[9] Zhang, J.; Yao, Z.; Li, H., A hybrid boundary node method, Int J Numer Methods Eng, 53, 751-763 (2002)
[10] Kitipornchai, S.; Liew, K. M.; Cheng, Y., A boundary element-free method (BEFM) for three-dimensional elasticity problems, Comput Mech, 36, 13-20 (2005) · Zbl 1109.74372
[11] Peng, M.; Cheng, Y., A boundary element-free method (BEFM) for two-dimensional potential problems, Eng Anal Bound Elem, 33, 77-82 (2009) · Zbl 1160.65348
[12] Li, X.; Zhu, J., A Galerkin boundary node method and its convergence analysis, J Comput Appl Math, 230, 314-328 (2009) · Zbl 1189.65291
[13] Li, X.; Zhu, J., A Galerkin boundary node method for biharmonic problems, Eng Anal Bound Elem, 33, 858-865 (2009) · Zbl 1244.65175
[14] Zhang, J.; Yao, Z., Meshless regular hybrid boundary node method, Comput Model Eng Sci, 2, 301-318 (2001) · Zbl 0991.65129
[15] Zhang, J.; Tanaka, M.; Matsumoto, T., Meshless analysis of potential problems in three dimensions with the hybrid boundary node method, Int J Numer Methods Eng, 59, 1147-1168 (2004) · Zbl 1048.65121
[16] Zhang, J.; Yao, Z., The regular hybrid boundary node method for three-dimensional linear elasticity, Eng Anal Bound Elem, 28, 525-534 (2004) · Zbl 1130.74492
[17] Miao, Y.; Wang, Y., Development of hybrid boundary node method in two dimensional elasticity, Eng Anal Bound Elem, 29, 703-712 (2005) · Zbl 1182.74229
[18] Yan, F.; Wang, Y.; Tham, L. G.; Cheung, Y. K., Dual reciprocity hybrid boundary node method for 2-D elasticity with body force, Eng Anal Bound Elem, 32, 713-775 (2008) · Zbl 1244.74201
[19] Yan, F.; Wang, Y.; Miao, Y.; Cheung, Y. K., Dual reciprocity hybrid boundary node method for free vibration analysis, J Sound Vib, 321, 1036-1057 (2009)
[20] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Int J Numer Methods Eng, 54, 1623-1648 (2002) · Zbl 1098.74741
[21] Liu, G. R.; Gu, Y. T., A local radial point interpolation method (LRPIM) for free vibration analysis of 2-D solids, J Sound Vib, 246, 29-46 (2001)
[22] Liu, G. R.; Yan, L.; Wang, J. G.; Gu, Y. T., Point interpolation method based on local residual formulation using radial basis functions, Struct Eng Mech, 14, 713-732 (2002)
[23] Gu, Y. T.; Liu, G. R., A boundary radial point interpolation method (BRPIM) for 2-D structural analyses, Struct Eng Mech, 15, 535-550 (2002)
[24] Liu, G. R.; Gu, Y. T., Boundary meshfree methods based on the boundary point interpolation methods, Eng Anal Bound Elem, 28, 475-487 (2004) · Zbl 1130.74466
[25] Wu, Y. L.; Liu, G. R., A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation, Comput Mech, 30, 355-365 (2003) · Zbl 1038.76542
[26] Liu, G. R.; Gu, Y. T., Comparisons of two meshfree local point interpolation methods for structural analyses, Comput Mech, 29, 107-121 (2002) · Zbl 1053.74659
[27] Dumont, N. A., The hybrid boundary element method, (Brebbia, C. A.; Wendland, W. L.; Kuhn, G., Boundary elements IX, vol. 1 (1988), Springer: Springer Berlin) · Zbl 0749.73079
[28] DeFiigueiredo, T. G.B., A new boundary element formulation in engineering (1991), Springer: Springer Berlin
[29] Gu, Y. T.; Liu, G. R., Hybrid boundary point interpolation method and their coupling with the element free Galerkin method, Eng Anal Bound Elem, 27, 905-917 (2003) · Zbl 1060.74651
[30] Madych, W. R.; Nelson, S. A., Multivariate interpolation and conditionally positive definite functions II, Math Comput Math Comput, 54, 211-230 (1990) · Zbl 0859.41004
[31] Powell, M. J.D., The theory of radial basis function approximation in 1990, (Light, W., Advances in numerical analysis, vol. II (1997), Oxford Science Publications: Oxford Science Publications Oxford) · Zbl 0787.65005
[32] Selvadurai, A. P.S., Partial differential equations in mechanics, vol. 1 (2000), Springer: Springer Berlin · Zbl 0967.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.