×

Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. (English) Zbl 1242.65157

Summary: We examine a numerical method to approximate to a fractional diffusion equation with the Riesz fractional derivative in a finite domain, which has second order accuracy in time and space level. In order to approximate the Riesz fractional derivative, we use the ”fractional centered derivative” approach. We determine the error of the Riesz fractional derivative to the fractional centered difference. We apply the Crank-Nicolson method to a fractional diffusion equation which has the Riesz fractional derivative, and obtain that the method is unconditionally stable and convergent. Numerical results are given to demonstrate the accuracy of the Crank-Nicolson method for the fractional diffusion equation with using fractional centered difference approach.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35R11 Fractional partial differential equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Schneider, W. R.; Wyss, W., Fractional diffusion and wave equations, Journal of Mathematical Physics, 30, 1, 134-144 (1989) · Zbl 0692.45004
[2] Wyss, W., The fractional diffusion equation, Journal of Mathematical Physics, 27, 11, 2782-2785 (1986) · Zbl 0632.35031
[3] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1, 1-77 (2000) · Zbl 0984.82032
[4] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37, R161 (2004) · Zbl 1075.82018
[5] Sabatier, J.; Agrawal, O. P.; Machado, J. A.T., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (2007), Springer: Springer Netherlands · Zbl 1116.00014
[6] Magin, R. L., Fractional Calculus in Bioengineering (2006), Begell House Publisher., Inc.: Begell House Publisher., Inc. Connecticut
[7] Scalas, E.; Gorenflo, R.; Mainardi, F., Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and its Applications, 284, 1-4, 376-384 (2000)
[8] Gorenflo, R.; Mainardi, F., Random walk models for space-fractional diffusion processes, Fractional Calculus and Applied Analysis, 1, 2, 167-191 (1998) · Zbl 0946.60039
[9] S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional integrals and derivatives: theory and applications. Transl. from the Russian. New York, Gordon and Breach, 1993.; S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional integrals and derivatives: theory and applications. Transl. from the Russian. New York, Gordon and Breach, 1993. · Zbl 0818.26003
[10] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier Science Ltd: Elsevier Science Ltd Amsterdam · Zbl 1092.45003
[11] Podlubny, I., Fractional Differential Equations (1999), Academic press: Academic press New York · Zbl 0918.34010
[12] Tuan, V. K.; Gorenflo, R., Extrapolation to the limit for numerical fractional differentiation, Zeitschrift für angewandte Mathematik und Mechanik, 75, 8, 646-648 (1995) · Zbl 0860.65011
[13] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Applied Numerical Mathematics, 56, 1, 80-90 (2006) · Zbl 1086.65087
[14] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion equation, Journal of Computational Physics, 213, 1, 205-213 (2006) · Zbl 1089.65089
[15] Shen, S.; Liu, F.; Anh, V., Numerical approximations and solution techniques for the space-time Riesz-caputo fractional advection-diffusion equation, Numerical Algorithms, 56, 383-403 (2011) · Zbl 1214.65046
[16] Shen, S.; Liu, F.; Anh, V.; Turner, I., The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA Journal of Applied Mathematics, 73, 850-872 (2008) · Zbl 1179.37073
[17] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM Journal on Numerical Analysis, 47, 3, 1760-1781 (2009) · Zbl 1204.26013
[18] Yang, Q.; Liu, F.; Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling, 34, 1, 200-218 (2010) · Zbl 1185.65200
[19] Yang, Q.; Turner, I.; Liu, F., Analytical and numerical solutions for the time and space-symmetric fractional diffusion equation, Australian and New Zealand Industrial and Applied Mathematics Journal (ANZIAM), 50, C800-C814 (2009) · Zbl 1359.35099
[20] Zhang, H.; Liu, F., Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term, Journal of Applied Mathematics and Informatics, 26, 1-2, 1-14 (2008)
[21] Zhang, H.; Liu, F.; Anh, V., Galerkin finite element approximation of symmetric space-fractional partial differential equations, Applied Mathematics and Computation, 217, 6, 2534-2545 (2010) · Zbl 1206.65234
[22] Ortigueira, M. D., Riesz potential operators and inverses via fractional centred derivatives, International Journal of Mathematics and Mathematical Sciences, 1-12 (2006) · Zbl 1122.26007
[23] Kincaid, D.; Cheney, W., Numerical Analysis (1991), Brooks/Cole Pub.: Brooks/Cole Pub. California
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.